Skip to main content
Log in

Fluid and gas migration in the North German Basin: fluid inclusion and stable isotope constraints

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Fluid inclusions have been studied in minerals infilling fissures (quartz, calcite, fluorite, anhydrite) hosted by Carboniferous and Permian strata from wells in the central and eastern part of the North German Basin in order to decipher the fluid and gas migration related to basin tectonics. The microthermometric data and the results of laser Raman spectroscopy reveal compelling evidence for multiple events of fluid migration. The fluid systems evolved from a H2O–NaCl±KCl type during early stage of basin subsidence to a H2O–NaCl–CaCl2 type during further burial. Locally, fluid inclusions are enriched in K, Cs, Li, B, Rb and other cations indicating intensive fluid–rock interaction of the saline brines with Lower Permian volcanic rocks or sediments. Fluid migration through Carboniferous sediments was often accompanied by the migration of gases. Aqueous fluid inclusions in quartz from fissures in Carboniferous sedimentary rocks are commonly associated with co-genetically trapped CH4–CO2 inclusions. P–T conditions estimated, via isochore construction, yield pressure conditions between 620 and 1,650 bar and temperatures between 170 and 300°C during fluid entrapment. The migration of CH4-rich gases within the Carboniferous rocks can be related to the main stage of basin subsidence and stages of basin uplift. A different situation is recorded in fluid inclusions in fissure minerals hosted by Permian sandstones and carbonates: aqueous fluid inclusions in calcite, quartz, fluorite and anhydrite are always H2O–NaCl–CaCl2-rich and show homogenization temperatures between 120 and 180°C. Co-genetically trapped gas inclusions are generally less frequent. When present, they show variable N2–CH4 compositions but contain no CO2. P–T reconstructions indicate low-pressure conditions during fluid entrapment, always below 500 bar. The entrapment of N2–CH4 inclusions seems to be related to phases of tectonic uplift during the Upper Cretaceous. A potential source for nitrogen in the inclusions and reservoirs is Corg-rich Carboniferous shales with high nitrogen content. Intensive interaction of brines with Carboniferous or even older shales is proposed from fluid inclusion data (enrichment in Li, Ba, Pb, Zn, Mg) and sulfur isotopic compositions of abundant anhydrite from fissures. The mainly light δ34S values of the fissure anhydrites suggest that sulfate is either derived through oxidation and re-deposition of biogenic sulfur or through mixing of SO 2−4 -rich formation waters with variable amounts of dissolved biogenic sulfide. An igneous source for nitrogen seems to be unlikely since these rocks have low total nitrogen content and, furthermore, even extremely altered volcanic rocks from the study area do not show a decrease in total nitrogen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bandlowa T (1998) Erdgasführung im Karbon-Perm-Trias-Komplex der mitteleuropäischen Senke. Geol Jb A 151:3–65

    Google Scholar 

  • Banks DA, Giuliani G, Yardley BDW, Cheilletz A (2000) Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing. Miner Deposita 35:699–713

    Article  Google Scholar 

  • Banks DA, Boyce AJ, Samson IM (2002) Constraints on the origins of fluids forming Irish Zn-Pb-Ba deposits: evidence from the composition of fluid inclusions. Econ Geol 97:471–480

    Article  Google Scholar 

  • BGR, BGS, GEUS, TNO, PGI (1998) NW European Gas Atlas. In: Lokhurst (ed), ISBN 90–72869–60–5

  • Brown PE, Hagemann SG (1994) MacFlinCor: a computer program for fluid inclusion data reduction and manipulation. In: De Vivo B, Frezotti ML (eds) Fluid Inclusions in minerals: methods and applications. IMA Short C, pp 231–250

  • Davis DW, Lowenstein TK, Spencer RJ (1990) Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O, and NaCl–CaCl2–H2O. Geochim Cosmoschim Acta 54:591–601

    Article  Google Scholar 

  • Davisson ML and Criss RE (1996) Na–Ca–Cl relations in basinal fluids. Geochim et Cosmochim Acta 60:2743–2752

    Article  Google Scholar 

  • Everlien G (1990) Das Verhalten des in Mineralen gebundenen Stickstoffs während der Diagenese und Metamorphose von Sedimenten. PhD Thesis, TU Braunschweig, pp 1–88

  • Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France. 1. Brines associated with Triasssic salts. Chem Geol 109:149–175

    Article  Google Scholar 

  • Gerling P, Kockel F, Krull P (1999) Das Kohlenwasserstoffpotential des Präwestfals im Norddeutschen Becken. DGMK Forschungsb 433:1–107

    Google Scholar 

  • Gerling P, Lokhorst A, Nicholson RA, Kotarba M (1998) Natural gas from Pre-Westphalian sources in Northwest Europe – a new exploration target. – Int. Gas Research Conf., Proceedings, 219–229, San Diego

  • Günther D, Audetat A, Frischknecht R, Heinrich CA (1998) Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation inductively coupled plasma mass spectrometry. J Anal Atom Spec 13(4):263–270

    Article  Google Scholar 

  • Goldstein RH (2001) Fluid inclusions in sedimentary and diagenetic systems. Lithos 55:159–193

    Article  Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM Short C 31, pp 1–199

    Google Scholar 

  • Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta 67:3473–3496

    Article  Google Scholar 

  • Hoth P (1997) Fazies und Diagenese von Präperm-Sedimenten der Geotraverse Harz - Rügen. Schriftenr Geowiss 4:1–139

    Google Scholar 

  • Krooss BM, Littke R, Müller B, Frielingsdorf J, Schwochau K, Idiz EF (1995) Generation of nitrogen and methane from sedimentary organic matter: implications on the dynamics of natural gas accumulations. Chem Geol 126:291–318

    Article  Google Scholar 

  • Littke R, Krooss BM, Idiz EF, Frielingsdorf J (1995) Molecular nitrogen in natural gas accumulations: generation from sedimentary organic matter at high temperatures. Am Assoc Pet Geol Bull 79:410–430

    Google Scholar 

  • Lüders V, Möller P (1992) Fluid evolution and ore deposition in the Harz Mountains (Germany). Eur J Mineral 4:1053–1068

    Google Scholar 

  • Lüders V, Stedingk K, Franzke HJ (1993) Review of geological setting and mineral paragenesis. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits—a case study of the Pb-Zn, barite and fluorite deposits of the Harz Mountains, Mono Ser Min Dep 30:5–11

  • Lüders V, Hoth P, Reutel C (1999) Fluid- and gas migration in the eastern part of the North German Basin. Terra Nostra 99/6:193–195

    Google Scholar 

  • Mingram B, Hoth P, Lüders V, Harlov D (2005) The significance of fixed ammonium in Paleozoic sediments for the generation of nitrogen rich natural gases in the North German Basin (NGB). This issue

  • Nielsen H (1979) Sulfur isotopes in nature. In: Jäger E, Hunziker J (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 283–312

    Google Scholar 

  • Ohmoto H (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67:551–579

    Article  Google Scholar 

  • Ohmoto H, Lasaga AC (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1745

    Article  Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 509–567

    Google Scholar 

  • Pettke T, Halter WE, Webster JD, Aigner-Torres M, Heinrich CA (2004) Accurate quantification of melt inclusion chemistry by LA-ICPMS: A comparison with EMP and SIMS and advantages and possible limitations of these methods. Lithos 78:333–361

    Article  Google Scholar 

  • Reutel C, Lüders V (1998) Fluid-Evolution und Gasmigration im südlichen Randbereich des Nordostdeutschen Beckens – Untersuchungen an Flüssigkeitseinschlüssen in Kluftmineralisationen und im Werra-Anhydrit. Geol Jb A 149:169–183

    Google Scholar 

  • Reutel C, Lüders V, Hoth P, Idiz EF (1995) Gas migration and accumulation along lineament structures – Lower Saxony Basin (NW Germany). Bol Soc Espan Min 18:205–206

    Google Scholar 

  • Rieken R (1988) Lösungs-Zusammensetzung und Migrationsprozesse von Paläo-Fluidsystemen in Sedimentgesteinen des Nordwestdeutschen Beckens. PhD Thesis, Univ Göttingen, GAGP 37, pp 1–116

  • Rieken R, Gaupp R (1991) Fluideinschluß-Untersuchungen an Sandsteinen des Gasfeldes Thönse. Nds Akad Geowiss Veröfftl 6:68–99

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineral Soc Am Rev Mineral 12:1–644

    Google Scholar 

  • Schmidt Mumm A, Wolfgramm M (2004) Fluid systems and mineralisation in the North German and Polish Basin. Geofluids 4:315–328

    Article  Google Scholar 

  • Scholten SO (1991) The distribution of nitrogen isotopes in sediments. Geol Ultraiectina 81:1–101

    Google Scholar 

  • Spencer RJ, Møller N, Weare JH (1990) The prediction of mineral solubilities in natural water: A chemical equilibrium model for the Na–K–Ca–Mg–Cl–SO4–H2O system at temperatures below 25°C. Geochim Cosmochim Acta 54:575–590

    Article  Google Scholar 

  • Stedingk K, Ehling B-C, Knoth W, Germann K, Schwab M (1995) Epigenetic mineralizing processes in the Northeastern Rhenohercynian Belt (Harz Mountains, Flechtingen-Rosslau Block). In: Pašava J, Kříbek B, Žák K (eds) Mineral Deposits: from their origin to their environmental impacts, pp 79–82

  • Thiéry R, Vidal J, Dubessy J (1994) Phase equilibria modelling applied to fluid inclusions. Liquid-vapour eqilibria and calculation of the molar volume in the CO2–CH4–N2system. Geochim Cosmochim Acta 58:1073–1082

    Article  Google Scholar 

  • Verma SP, Santoyo E (1997) New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. J Volcanol Geotherm Res 79:9–23

    Article  Google Scholar 

  • Wolfgramm M (2002) Fluidentwicklung und Diagenese im Nordostdeutschen Becken – Petrographie, Mikrothermometrie und Geochemie stabiler Isotope. PhD thesis, Univ Halle, pp 1–170

Download references

Acknowledgements

This paper benefited significantly from reviews by Rudy Svennen (Leuven) and a (nearly) unknown reviewer of the International Journal of Sciences (Geologische Rundschau). We are indebted to EEG Berlin/Gaz de France, BEB Hannover and ExxonMobil Hannover/Celle for providing sample material. The study received financial support from the Deutsche Forschungsgesellschaft (DFG) Bonn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Lüders.

Appendix

Appendix

Table 4 Fluid inclusion microthermometric data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüders, V., Reutel, C., Hoth, P. et al. Fluid and gas migration in the North German Basin: fluid inclusion and stable isotope constraints. Int J Earth Sci (Geol Rundsch) 94, 990–1009 (2005). https://doi.org/10.1007/s00531-005-0013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0013-2

Keywords

Navigation