Skip to main content
Log in

Numerical modelling of chloride propagation in the quaternary aquifer of the southern Upper Rhine Graben

  • Original paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The deep groundwater in the quaternary gravel sequence of the southern Upper Rhine Graben locally contains high chloride concentrations near the river Rhine between Fessenheim (France) in the South and Breisach (Germany) in the North. This historical pollution is mainly due to past infiltration from the former brine storage basins of the French potash mines on the “Fessenheim Island” and—to a lesser extent—from the leaching of the salt dumps of the German potash mines in Buggingen and Heitersheim. The spreading of the salt plume was investigated by means of a groundwater model. The aim of the model was to understand the brine movement, the present distribution of chloride as defined by recent hydrochemical investigations, and to select locations for new reconnaissance boreholes. The geological structure was reproduced by a three layer model, which was calibrated for steady state flow conditions. The hydraulic conductivity of the first layer was determined by comparing measured and calculated heads in the model area. The vertical resolution was refined to simulate the density-dependent salt transport processes. The transport of the salt plumes was simulated over a 40-year period, starting at the beginning of brine storage in the 1950s. The relevant transport parameters have been estimated in a sensitivity analysis, where the simulated breakthrough curves of chloride concentration have been compared with the measured data. The results of the groundwater model indicate that brines containing approximately 1 million tons of chloride are still present at the bottom of the aquifer. These highly concentrated salt brines mix with fresh water from the upper part of the aquifer. This dispersive process leads to the formation of a plume of chloride-rich water extending downstream, where pumping wells for several local water supplies are located.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ackerer P, Younes A, Mose R (1999) Modelling variable density flow and solute transport in porous medium: 1. Numerical model and verification. Transport Porous Media 35:345–373 10 figs, 1 tab

    Google Scholar 

  • Bartz J, mit Beiträgen von G. van der Brelie und H. Maus (1982) Quartär und Jungtertiär II im Oberrheingraben im Großraum Karlsruhe. Geol J A 63:3–237, 28 Abb., 8 tab., 2 Taf., Hannover

    Google Scholar 

  • Bauer M, Eichinger L, Elsass P, Kloppmann W, Wirsing G (2004) Isotopic and hydrochemical studies of groundwater flow and salinity in the Southern Upper Rhine Graben (in press)

  • Bear J (1979) Hydraulics of groundater. McGraw-Hill, New York

    Google Scholar 

  • BRGM (1998) Modèle de la nappe d‘Alsace. Projet de développement 312, Rapport final

  • Diersch H-J, Kolditz O (1998) Coupled groundwater flow and transport: 2. Themohaline and 3D convection systems. Adv Water Resour 21:401–425, 19 figs, 2 tabs

    Article  Google Scholar 

  • Diersch H-J, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. White Papers, vol II. Wasy, Germany, p 122, 35 figs, 8 tabs

  • Eßlinger G (1968) Rezente Salzbewegungen über dem Salinar des südlichen Oberrheintals. Diss. Techn. Univ. Berlin, 75 S., 11 Abb., 11 Anl., 9 Taf., Berlin

  • Elder JW (1967b) Transient convection in a porous medium. J Fluid Mech 27(Part 3):609–623

    Google Scholar 

  • Elder JW (1967a) Steady free convection in a porous medium heated from below. J Fluid Mech 27:29–48

    Google Scholar 

  • Frolkovic P, De Schepper H (2001) Numerical modelling of convection dominated transport with density driven flow in porous media. Adv Water Resour 24(1):63–72

    Article  Google Scholar 

  • Geologisches Landesamt Baden-Württemberg (1997) Sachstandsbericht zur Grundwasserversalzung in der Oberrheinebene südlich des Kaiserstuhls. Az 0886.01/96–4763, Freiburg i. Br

  • GKW (1999) Simulation of processes in groundwater. Finite-Element-Program, delta-h, Bochum, p 807

  • Henry HR (1964) Effects of dispersion on salt encroachment in coastal aquifers. In: Sea water in coastal aquifers. USGS Water Supply Paper, 1613-C, pp C70–C84

  • Herbert AW, Jackson CP, Lever DA (1988) Coupled groundwater flow and solute transport with fluid density strongly dependent on concentration. Water Resour Res 24:1781–1795

    Google Scholar 

  • HGK (1977) Hydrogeologische Karte von Baden-Württemberg: Oberrheingebiet Bereich Kaiserstuhl-Markgräflerland mit Erläuterungen. Geologisches Landesamt und Landesanstalt für Umweltschutz Baden-Württemberg. 1–65, Karlsruhe, Freiburg

  • HGK (1999) Hydrogeologische Kartierung und Grundwasserbewirtschaftung Rhein-Neckar-Raum 1–155, Stuttgart, Wiesbaden, Mainz

  • Hüttner R (1991) Bau und Entwicklung des Oberrheingrabens. Ein Überblick mit historischer Rückschau. Geol Jb E48:17–42

    Google Scholar 

  • Illies HJ (1977) Ancient and recent rifting in the Rhinegrabe. Geol En Mijnbouw 56(4):329–350

    Google Scholar 

  • Johannsen K (2003) On the validity of the Boussinesq approximation for Elder problem. Comput Geosci 7:169–182

    Google Scholar 

  • Johannsen K, Kinzelbach W, Oswald SE, Wittum G (2002) The saltpool benchmark problem—numerical simulation of saltwater upcoming in a porous medium. Adv Water Resour 25:335–348

    Article  Google Scholar 

  • Kolditz O, Ratke R, Diersch HJG, Zielke W (1998) Coupled groundwater flow and transport: 1 verification of variable density flow and transport models, Adv Water Resour 21(1):27–46

    Google Scholar 

  • Konikow LF, Sanford WE, Campbell PJ (1997) Constant-concentration boundary conditions: Lessons from the HYDROCOIN variable-density groundwater benchmark problem. Water Resour Res 33(10):2253–2261

    Article  Google Scholar 

  • Landesanstalt für Umweltschutz Baden-Württemberg, Région Alsace (1996) “Demonstrationsvorhaben zum Schutz und zur Bewirtschaftung des Grundwassers des deutsch-französischen-schweizerischen Oberrheingrabens”, Abschlussbericht, Life-Projekt, p 166

  • LGRB (2000) Geologisch-hydrogeologischer Bau im baden-württembergischen Teil des Oberrheingrabens südlich des Kaiserstuhls, unpublished report, Az. 0527.01/00-4763, Freiburg i. Br.

  • Lutz M, Cleintuar M (1999) Geological results of a hydrocarbon exploration campaign in the southern Upper Rhine Graben. Bull Angew Geol 4(Suppl):3–80, 37 figs

    Google Scholar 

  • Oldenburg CM, Pruess K (1995) Dispersive transport dynamics in a strongly coupled groundwater-brine flow system. Water Resour Res 31:289–302

    Article  CAS  Google Scholar 

  • Oswald SE (1998) Dichteströmungen in porösen Medien: Dreidimensionale Experimente und Modellierungen (Density driven flows in porous media: three-dimensional experiments and modeling). Dissertation ETH Zürich, No 12812 Switzerland, p 120

  • Pflug R (1982) Bau und Entwicklung des Oberrheingrabens. Erträge d Forsch 184:1–145

    Google Scholar 

  • Regierungspräsidium Freiburg (2002) Grenzüberschreitende Erkundung des tiefen rheinnahen Grundwasserleiters zwischen Fessenheim und Breisach. Final Report Interreg II-Project, 166 p., Landesanstalt für Umweltschutz, Landesamt für Geologie, Rohstoffe und Bergbau, Gewässerdirektion Südlicher Oberrhein/Hochrhein, Bereich Waldshut-Tiengen, Geowissenschaftliche Gemeinschaftsaufgaben, Région Alsace, Agence de l’ eau Rhin-Meuse, BRGM., p 166

  • Région Alsace (2000) Bestandsaufnahme der Grundwasserqualität im Oberrheingraben, Ergebnisse der Untersuchungen in tiefen Grundwasserbereichen, 134 S., 41 Abb., 8 tab., Straßbourg

  • Segol G (1994) Classic groundwater simulations: proving and improving numerical codes. Prentice Hall, New Jersey

    Google Scholar 

  • Swedish Nuclear Power Inspectorate (1988) Groundwater hydrology modelling strategies for performance assessments of nuclear waste disposal, Level 1: code verification, Summary Report NEA SKI 1988

  • Voss CI, Souza WR (1987)Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour Res 23:10, 1857ff

    Google Scholar 

Download references

Acknowledgements

We thank W. Schäfer and an anonymous reviewer. The paper benefited a lot from their useful suggestions and comments. This study is part of the INTERREG-II project “Grenzüberschreitende Erkundung des tiefen rheinnahen Grundwasserleiters zwischen Fessenheim und Breisach“ which was financed by the European Union as well as by several German and French authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, U., Gudera, T., Elsass, P. et al. Numerical modelling of chloride propagation in the quaternary aquifer of the southern Upper Rhine Graben. Int J Earth Sci (Geol Rundsch) 94, 550–564 (2005). https://doi.org/10.1007/s00531-005-0477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0477-0

Keywords

Navigation