Skip to main content
Log in

Rock-avalanche dynamics: insights from granular physics experiments

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Rock avalanches are known to behave in extraordinary ways unlike other landslides, and their deposits in part reflect their unusual physical behavior. Recent experiments in granular physics suggest that many phenomena and features simply reflect the non-linear nature of granular flows, although some behavior cannot simply be reproduced in lab scale experiments. In a static configuration, grain–grain contact networks dominate the distribution of forces and stresses within a granular mass. During flow, granular collisions damp the system through energy dissipation, while gravitational potential drives the system. The energy distribution between static and collisional stresses within the system can change very rapidly. Threshold events dominate system response, and the challenge is to find which characterization of the static phase helps to predict failure (and thus flow) resistance. Once flowing, many “unusual” rock-avalanche phenomena are entirely consistent with the physics of flow of large granular masses, but the low energy dissipation rate required for long run-out events requires the presence of physical processes that are not involved in experimental flows in the current parameter range or in the assumptions of current models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Barrat A, Loreto V (2001) Memory in aged granular media. Europhys Lett 53:297

    Article  Google Scholar 

  • Baumberger T, Berthoud P, Caroli C (1999) Physical analysis of the state- and rate-dependent friction law II. Dynamic friction. Phys Rev B 60:3928

    Article  Google Scholar 

  • Campbell CS, Cleary P, Hopkins M (1995) Large scale landslide simulations: global deformation, velocities, and basal friction. J Geophys Res 100:8267

    Article  Google Scholar 

  • Cleary P, Campbell CS (1993) Self-lubrication for long run-out landslides: examination by computer simulation. J Geophys Res 98:21911

    Article  Google Scholar 

  • Daly RA, Miller WG, Rice GS (1912) Report of the Commission appointed to investigate Turtle Mountain, Frank, Alberta. Can Geol. Survey Memoir 27, Ottawa

  • Eberhart-Phillips D et al (2003) The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event. Science 300:1113

    Article  Google Scholar 

  • Edwards SF, Grinev DV (2001) Transmission of stress in granular materials as a problem of statistical mechanics. Physica A 302:162

    Article  Google Scholar 

  • Erismann TH (1979) The mechanics of large landslides. Rock Mech 12:5

    Article  Google Scholar 

  • Erismann TH, Abele G (2001) Dynamics of rockslides and rockfalls. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Felix G, Thomas N (2004) Relation between dry granular flow regimes and morphology of deposits: formation of levees in pyroclastic deposits. Earth Planet Sci Lett 221:197

    Article  Google Scholar 

  • Friedmann SJ, Kwon G, Losert W (2003) Granular memory and its effect on the triggering and distribution of rock avalanche events. J Geophys Res 108

  • Geng J, Longhi E, Howell DW, Behringer RP (2001) Memory in two-dimensional heap experiments. Phys Rev E 64:060301

    Article  Google Scholar 

  • Heim A (1932) Bergsturz und Menschleben. Fretz & Wasmuth, Zurich, pp 1–218

    Google Scholar 

  • Herrmann HJ, Luding S (1998) Modeling granular media on the computer. Continuum Mech Thermodyn 10:189

    Article  Google Scholar 

  • Howard K (1973) Avalanche mode of motion: implications from lunar examples. Science 180:1052

    Article  Google Scholar 

  • Hsu KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:129

    Article  Google Scholar 

  • Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiment and theoretical predictions. Philos Trans R Soc Lond A 334:93

    Article  Google Scholar 

  • Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids and gases. Rev Mod Phys 68:1259

    Article  Google Scholar 

  • Josserand C, Tkachenko AV, Mueth DM, Jaeger HM (2000) Memory effects in granular materials. Phys Rev Lett 85:3632

    Article  Google Scholar 

  • Karner SL, Marone C (1998) The effect of shear load on frictional healing in simulated fault gouge. Geophys Res Lett 25:4561

    Article  Google Scholar 

  • Keefer DK (1993) The susceptibility of rock slopes to earthquake-induced failure. Bull Assoc Eng Geol 30:353

    Google Scholar 

  • Knight JB, Fandrich CG, Lau CN, Jaeger HM, Nagel SR (1995) Density relaxation in a vibrated granular material. Phys Rev E 51:3957

    Article  Google Scholar 

  • Komatsu TS, Inagaki S, Nakagawa N, Nasuno S (2001) Creep motion in a granular pile exhibiting steady surface flow. Phys Rev Lett 86:1757

    Article  Google Scholar 

  • Lajeunesse E, Mangeney-Castelneau A, Vilotte J.-P (2004) Speeding of a granular mass on an horizontal plane. Phys Fluids 16:2731

    Article  Google Scholar 

  • Liu AJ, Nagel SR (1998) Jamming is not just cool anymore. Nature 396:N6706, 21

    Google Scholar 

  • Losert W, Kwon G (2001) Transient and steady state dynamics of granular shear flows. Adv Complex Syst 4:369

    Article  Google Scholar 

  • Losert W, Geminard J-C, Nasuno S, Gollub JP (2000) Mechanisms for slow strengthening in granular materials. Phys Rev E 61:4060

    Article  Google Scholar 

  • Lube G, Huppert HE, Sparks RS, Hallworth MA (2004) Axisymmetric collapses of granular columns. J Fluid Mech 508:175

    Article  Google Scholar 

  • Luchitta BK (1979) A large landslide on Mars. Geol Soc Am Bull 89:1601

    Article  Google Scholar 

  • McEwan AS (1989) Mobility of large rock avalanches: evidence from the Valles Marineris, Mars. Geology 17:1111

    Article  Google Scholar 

  • Melosh HJ (1979) Acoustic fluidization: a new geological process? J Geophys Res 84:7513

    Google Scholar 

  • Moore JG, Clague DA, Holcomb RT et al (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94:17456

    Google Scholar 

  • Mudge MR (1965) Rockfall-avalanche and rockslide-avalanche deposits at Sawtooth Ridge, Montana. Geol Soc Am Bull 76:1003

    Article  Google Scholar 

  • Mueth DM, Debregeas GF, Karczmar GS, Eng PJ, Nagel SR, Jaeger HM (2000) Signatures of granular microstructure in dense shear flows. Nature 406:385–389

    Article  Google Scholar 

  • Newey M, Van der Meer S, Ozik J, Ott E, Losert W (2006) Band-in-band segregation of multidisperse granular mixtures. Europhys Lett (in press)

  • O’Hern CS, Langer SA, Liu AJ, Nagel SR (2001) Force distributions near jamming and glass transitions. Phys Rev Lett 86:111

    Article  Google Scholar 

  • Oyama Y (1939) Bull Inst Phys Chem Res Japan Rep. 18:600 (in Japanese)

  • Pouliquen O, Delour J, Savage SB (1997) Fingering in granular flows. Nature 386:816

    Article  Google Scholar 

  • Radjai F, Wolf D, Jean M, Moreau JJ (1998) Bimodal character of stress transmission in granular packings. Phys Rev Lett 80:61

    Article  Google Scholar 

  • Radjai F, Roux S, Moreau JJ (1999) Contact forces in a granular packing. Chaos 9:544

    Article  Google Scholar 

  • Richard P, Philippe P, Barbe F, Bourlès Thibault X, Bideau D (2003) Analysis by X-ray microtomography of a granular packing undergoing compaction. Phys Rev E 68:020301

    Article  Google Scholar 

  • Savage SB, Lun CKK (1988) Particle size segregation in inclined chute flow of dry cohesionless granular solids. J Fluid Mech 189:311

    Article  Google Scholar 

  • Shinbrot T, Muzzio FJ (2000) Nonequilibrium patterns in granular mixing and segregation. Phys Today, p 25

  • Shreve RL (1968) The Blackhawk Landslide. Geol Soc Am Spec Paper 108, Boulder

  • Silbert LE, Ertas D, Grest GS, Halsey TC, Levine D (2002) Geometry of frictionless and frictional sphere packings. Phys Rev E 65:031304

    Article  Google Scholar 

  • Staron L, Hinch EJ (2006) Study of the collapse of granular columns using DEM numerical simulation. J Fluid Mech (in press)

  • Taberlet N, Richard P, Valance A, Losert W, Pasini JM, Jenkins JT, Delannay R (2003) Super stable granular heap in a channel. Phys Rev Lett 91:264–301

    Article  Google Scholar 

  • Toiya M, Stambaugh J, Losert W (2006) Transient and oscillatory granular shear flow. Phys Rev Lett (in press)

  • Vanel L, Howell DW, Clark D, Behringer RP, Clèment E (1999) Phys Rev E 60:R5040

  • Voight B (ed) (1978) Rockslides and avalanches 1: natural phenomena. Developments in geotechnical engineering, vol 14a, Elsevier, Amsterdam

Download references

Acknowledgements

This research was carried out as part of NASA research grant NAG32736. Thanks to M. Toiya, D. Britti, M. Newey, J. Harp, E. Schemm, and R. Pizzarro who carried out some of the granular experiments. Special thanks to Don Martin for his help in designing and assembling the experiments. Thanks to P. Richard and R. Delanney for input and expenses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Taberlet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedmann, S.J., Taberlet, N. & Losert, W. Rock-avalanche dynamics: insights from granular physics experiments. Int J Earth Sci (Geol Rundsch) 95, 911–919 (2006). https://doi.org/10.1007/s00531-006-0067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0067-9

Keywords

Navigation