Skip to main content
Log in

The Glueckstadt Graben of the North-German Basin: new insights into the structure from 3D and 2D gravity analyses

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The structure of the Glueckstadt Graben has been investigated by use of 3D gravity backstripping technique and by 2D gravity and magnetic modelling. Subtracting the gravity effects of the Meso-Cenozoic sediments together with Permian salt reveals a positive residual anomaly within the Glueckstadt Graben. This anomaly includes two local maxima over the Westholstein and Eastholstein Troughs. The 2D gravity models point to the presence of a high-density body within the lower crust of the Glueckstadt Graben. In addition, the results of 2D magnetic modelling indicate that the central part of the high-density body is overlain by an area with high susceptibility. Most probable, the formation of this high-density body is a result of complex poly-phase tectonic history of the study area. Finally, the results of gravity modelling indicate that Permian salt is not homogeneous. 3D gravity analysis and, especially, 2D gravity modelling have distinguished the differences in degree of salt saturation in salt-rich bodies, and elucidate the proportion of Rotliegend salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramovitz T, Thybo H (1999) Pre-zechstein structures around the MONNA LISA deep seismic lines in the southern Horn Graben area. Bull Geol Soc Den 45:99–116

    Google Scholar 

  • Bachmann GH, Grosse S (1989) Struktur und Entstehung des Norddeutschen Beckens—geologische und geophysikalische Interpretation einer verbesserten Bouguer-Schwerekarte. Veröff Akad Geowiss 2:23–47

    Google Scholar 

  • Bachmann GH, Hoffmann N (1997) Development of the Rotliegend basin in Northern Germany. Geol Jb D 103:9–31

    Google Scholar 

  • Baldschuhn R, Frisch U, Kockel F (eds) (1996) Geotektonischer Atlas von NW-Deutschland 1:3000000. 4pp, 65 maps, Bundesanstalt für geowissenchaften und Rohstoffe, Hannover

  • Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotectonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sector. Reihe A 153:3–95

    Google Scholar 

  • Bayer U, Scheck M, Rabbel W, Krawczyk CM, Götze H-J, Stiller M, Beilecke Th, Marotta A-M, Barrio-Alvers L, Kuder J (1999) An integrated study of the NE-German Basin. Tectonophysics 314:285–307

    Article  Google Scholar 

  • Bayer U, Grad M, Pharaoh TC, Thybo H, Guterch A, Banka D, Lamarche J, Lassen A, Lewerenz B, Scheck M, Marotta A-M (2002) The southern margin of the East European Craton: new results from seismic sounding and potential fields between the North Sea and Poland. Tectonophysics 360:301–314

    Article  Google Scholar 

  • Blundell D, Freeman R, Mueller St (1992) A continent revealed: the European Geotraverse. Cambrigde University Press, Cambridge, pp 1–275

    Google Scholar 

  • Brink H-J (2005) The evolution of the North German Basin and the metamorphism of the lower crust. Int J Earth Sci 94:1103–1116

    Article  Google Scholar 

  • Brink H-J, Franke D, Hoffmann N, Horst W, Oncken O (1990) Structure and evolution of the North German Basin. In: Freeman R, Giese P, Mueler St (Eds) The European geotraverse integrative studies. European Science Foundation, Strasbourg, pp 195–212

    Google Scholar 

  • Brink H-J, Dürshcner H, Trappe H (1992) Some aspects of the late and post-Variscan development of the Northwestern German Basin. Tectonophysics 207:65–95

    Article  Google Scholar 

  • Brink H-J, Bachem HC, Lühring HJ, Held B (1994) Erweiterte Präzechstein Bougueranomalie Norddeutschlands. Geowiss 12(3):74–79

    Google Scholar 

  • Dadlez R (2003) Mesozoic thickness pattern in the Mid-Polish Trough. Geol Q 47(3):223–240

    Google Scholar 

  • Dadlez R, Narkiewicz M, Stephenson RA, Visser MT, van Wees J-D (1995) Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics 252:179–195

    Article  Google Scholar 

  • DEKORP-BASIN’96 Research Group (1999) Deep crustal structure of the northeast German Basin: new DEKORP-Basin’96 deep-profiling results. Geology 27(1):55–58

    Google Scholar 

  • Dirkzwager JB, Stephenson RA, Legostaeva OV (2000) The pre-Permian residual gravity field for the Dutch onshore and adjacent offshore. Glob Planet Change 27:53–66

    Article  Google Scholar 

  • DOBREfraction’99 Working Group; Grad M, Gryn D, Janik T, Keller R, Lang R, Lyngsie SB, Omelchenko V, Starostenko VI, Stephenson RA, Stovba SM, Thybo H, Tolkunov A (2003) “DOBREfraction’99”, velocity model of the crust and upper mantle beneath the Donbas Foldbelt (East Ukraine). Tectonophysics 371:81–110

    Google Scholar 

  • Dohr G, Bachmann GH, Grosse S (1989) Das Norddeutsche Becken. Verffentlichungen-Niedersächsische Akademie der Geowissenschaften 2:4–47

  • EUGENO-S Working Group (1988) Crustal structure and tectonic evolution of the transition between the Baltic Shield and North German Caledonides (the EUGENO-S project). Tectonophysics 150:253–348

    Google Scholar 

  • Evans D, Graham C, Armour A, Bathurst P (2003) The Millennium Atlas: Petroleum geology of the central and northern North Sea. The Geological Society of London, London, pp 1–990

    Google Scholar 

  • Gast R (1988) Rifting im Rotliegenden Niedersachsens. Die Geowissenschaften 4:115–122

    Google Scholar 

  • Gregersen S, Voss P, TOR Working Group (2002) Summary of project TOR: delineation of a stepwise, sharp, deep lithosphere transition across Germany-Denmark-Sweden. Tectonophysics 260:63–70

    Google Scholar 

  • Hermes HJ (1986) Calculation of pre-Zechstein Bouguer anomaly in northwest Germany. First Break 4(1):13–32

    Google Scholar 

  • Inselmann R (1985) Dichte-Messungen in der Bundesrepublik Deutschland. Erdöl-Erdgas. 101.Jg., Heft 3:76–79

  • Kockel F (2002) Rifting processes in NW-Germany and the German North Sea sector. Geologie en Mijnbouw 81:149–158

    Google Scholar 

  • Kockel F (2003) Problems of diapirism in northern Germany. Geologos 6:57–88

    Google Scholar 

  • Krolikowski C, Grobelny A (1991) Preliminary results of the geophysical interpretation (stripping method) in respect to the pre-Permian basement of southwestern Poland. Kwartalnik Geologiczny 35(4):449–476

    Google Scholar 

  • Krzywiec P (2006) Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough-lateral variations in timing and structural style. Geol Q 50:151–168

    Google Scholar 

  • Lindner H, Scheibe R, Seidel K, Hoffmann N (2004) Berechnung von Relief, Tiefenlage und Magnetisierung des magnetisch wirksamen Kristallins für das Norddeutsche Becken. Z.angew Geol 50(1):65–73

    Google Scholar 

  • Lockhorst A (1998) NW European Gas Atlas-Composition and Isotope Ratios of natural Gases. GIS application on CD-ROM by the British Geological Survey, Bundesanstalt für Geowissenschaften und Rohstoffe, Danmarks og Gronlands Geologiske, Undersogelse, Netherlands Instituut voor Toegepaste geowetenschappen, Panstwowy Instytut Geologiczny, European Union

  • Lyngsie SB, Thybo H, Lassen TM (2006) Regional geological and tectonic structures of the North Sea area from potential field modelling. Tectonophysics 413:147–170

    Article  Google Scholar 

  • Maystrenko Y, Stovba S, Stephenson R, Bayer U, Menuoli E, Gajewski D, Huebsher C, Rabbel W, Saintot A, Starostenko V, Thybo H, Tolkunov A (2003) Crustal-scale pop-up structure in cratonic lithosphere: DOBRE deep seismic reflection study of the Donbas fold belt, Ukraine. Geology 31(8):733–736

    Article  Google Scholar 

  • Maystrenko Y, Bayer U, Scheck-Wenderoth M (2005a) The Glueckstadt Graben, a sedimentary record between the North Sea and Baltic Sea in north Central Europe. Tectonophysics 397:113–126

    Article  Google Scholar 

  • Maystrenko Y, Bayer U, Scheck-Wenderoth M (2005b) Structure and evolution of the Glueckstadt Graben due to salt movements. Int J Earth Sci 94:799–814

    Article  Google Scholar 

  • Maystrenko Y, Bayer U, Scheck-Wenderoth M (2006) 3D reconstruction of salt movements within the deepest post-Permian structure of the Central European Basin System—the Glueckstadt Graben. Neth J Geosci/Geologie en Mijnbou 85(3):183–198

    Google Scholar 

  • Mazur S, Scheck-Wenderoth M, Krzywiec P (2005) Different modes of the Late Cretaceous-Early Tertiary inversion in the North German and Polish basins. Int J Earth Sci 94:782–798

    Article  Google Scholar 

  • McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32

    Article  Google Scholar 

  • Olesen O, Smethurst MA, Torsvik TH, Bidstrup T (2004) Sveconorwegian igneous complexes beneath the Norwegian-Danish Basin. Tectonophysics 387:105–130

    Article  Google Scholar 

  • Otto V (2003) Inversion-related features along the southern margin of the North German Basin (Elbe fault system). Tectonophysics 373:107–123

    Article  Google Scholar 

  • Pharaoh TC (1999) Palaeozoic terranes and their lithosphere boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314:17–41

    Article  Google Scholar 

  • Plein E (1990) The Southern Permian Basin and its paleogeography. Sediments and environmental geochemistry—selected aspects and case histories. Springer, Berlin, pp 124–133

    Google Scholar 

  • Plomerova J, Babusska V, Kouba D (2002) Seismic anisotropy of the lithosphere around the Trans-European Suture Zone (TESZ) based on teleseismic body-wave data of the TOR experiment. Tectonophysics 360:89–114

    Article  Google Scholar 

  • Sannemann D (1968) Salt-stock families in northwestern Germany. In: Braunstein J, O’Brien G (eds) Diapirism and diapirs. AAPG publication, pp 261–270

  • Scheck M, Barrio-Alvers L, Bayer U, Götze H-J (1999) Density structure of the Northeast German Basin: 3D modeling along the DEKORP line BASIN96. Phys Chem Earth, Part A 24(3):221–230

    Article  Google Scholar 

  • Scheck M, Bayer U, Otto V, Lamarche J, Banka D, Pharaoh T (2002) The Elbe fault system in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics 360:281–299

    Article  Google Scholar 

  • Scheibe R, Seidel K, Vormbaum M, Hoffmann N (2005) Magnetic and gravity modelling of the crystalline basement in the North German Basin. Z dt Ges Geowiss 156(2):291–298

    Google Scholar 

  • Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System—new insights from a 3D structural model. Tectonophysics 397:143–165

    Article  Google Scholar 

  • Shomali ZH, Roberts RG, Pedersen LB, the TOR Working Group (2006) Lithospheric structure of the Tornquist Zone resolved by nonlinear P and S teleseismic tomography along the TOR array. Tectonophysics 416:133–149

    Article  Google Scholar 

  • Starostenko VI, Legostaeva OV (1998a) Calculation of the gravity field from a heterogeneous, arbitrarily truncated vertical rectangular prism. Izvestya, Physics of the Solid Earth 34(12):991–1003

    Google Scholar 

  • Starostenko VI, Legostaeva OV (1998b) Direct gravity problem for heterogeneous arbitrary truncated vertical rectangular prism. Izvestia. Physics of the Solid Earth 12:31–44

    Google Scholar 

  • Starostenko VI, Manukyan AG (1987) Gravimetric problems for spherical celestial bodies and their application to the study of the Nectaris Basin mascon on the Moon. Boll Geofis Teor Appl 29(115):201–219

    Google Scholar 

  • Starostenko VI, Legostaeva OV, Zavorot’ko AN, Egorova TP (1997a) 3-D modelling techniques in gravity of heterogeneous media. Annales Geophysicae Supplement I to 15:15

    Google Scholar 

  • Starostenko VI, Matsello VV, Aksak IN, Kulesh VA, Legostaeva OV, Yegorova TP (1997b) Automation of the computer input of images of geophysical maps and their digital modelling. Geophys J (Kiev) 17:1–19

    Google Scholar 

  • Thybo H (2001) Crustal structure along the EGT profile across the Tornquist Fan interpreted from seismic, gravity and magnetic data. Tectonophysics 334:155–190

    Article  Google Scholar 

  • Trusheim F (1960) Mechanism of salt migration in North Germany. Bull AAPG 44:1519–1540

    Google Scholar 

  • Vejbaek OV, Britze P (1994) Top of the pre-Zechstein rocks. Sub- and supercrop map: Danmarks Geologiske Undersogelse (DGU) Miloeministeriet, Copenhagen, DGU map series no. 45, 1 sheet, scale 1:750000

  • Wybraniec S, Zhou S, Thybo H, Forsberg R, Perhuc E, Lee MK, Demianov GD, Strakhov VN (1998) New map compiled of Europe’s gravity field. Eos, Trans Am Geophys Union 79(37):437–442

    Google Scholar 

  • Yegorova TP, Stephenson RA, Kozlenko VG, Starostenko VI, Legostaeva OV (1999) 3-D gravity analysis of the Dnieper-Donets Basin and Donbas Foldbelt, Ukraine. Tectonophysics 313:41–58

    Article  Google Scholar 

  • Yegorova TP, Stephenson RA, Kostyuchenko SL, Baranova EP, Starostenko VI, Popolitov KE (2004) Structure of the lithosphere below the southern margin of the East European Craton (Ukraine and Russia) from gravity and seismic data. Tectonophysics 381:81–100

    Article  Google Scholar 

  • Yegorova TP, Bayer U, Thybo H, Maystrenko Y, Scheck-Wenderoth M, Lyngsie SB (2007) Gravity signals from the lithosphere in the Central European Basin System. Tectonophysics

  • Yoon M, Baykulov M, Brink H-J, Gajewski D (2005) New insight into the crustal structure of northern Germany by reprocessing of reflection lines—Do we need a new evolution model for the Glückstadtgraben? Terra Nostra 05:127–130

    Google Scholar 

  • Zhou S, Thybo H (1996) Calculation of residual gravity anomalies in Northern Jutland, Denmark. First Break 14:129–134

    Google Scholar 

  • Zhou S, Thybo H (1997) Pre-Zechstein geology of the south-east North Sea, offshore Denmark—a geophysical perspective. First Break 15:387–395

    Article  Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell International Petroleum Mij. B.V. (dist. by Geol. Soc. Publ. House, Bath), The Hague, Netherlands, pp 1–239

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the German Research Council in the framework of the Priority Programme 1135—DFG-SPP 1135 “Dynamics of sedimentary systems under varying stress conditions by example of the Central European Basin system”. We are grateful to the DGMK as representative of the German Oil and Gas Industry for supporting us with data and allowing us to present industrial data (DGMK project 577). Special thanks go to the E&P-Gesellschaften for data assistance. We would also like to thank Heinz-Jürgen Brink and one anonymous reviewer for providing valuable and constructive reviews, which helped to improve the quality of the manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Maystrenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yegorova, T., Maystrenko, Y., Bayer, U. et al. The Glueckstadt Graben of the North-German Basin: new insights into the structure from 3D and 2D gravity analyses. Int J Earth Sci (Geol Rundsch) 97, 915–930 (2008). https://doi.org/10.1007/s00531-007-0228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0228-5

Keywords

Navigation