Skip to main content
Log in

Thermal modelling of the Larderello geothermal field (Tuscany, Italy)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We present a 3-D thermal model of the Larderello geothermal field (Tuscany) to evaluate (1) the extent and contribution of the heat transfer mechanisms (conduction vs. convection) at the intermediate-upper crust levels, (2) the variability of the heat and mass fluxes entering from below and (3) the crucial role of the formation permeability. The model, composed by three main layers, considers the upper 10 km of the crust to better constrain the simulations with experimental data from borehole, fluid inclusion studies and hypocentral distributions. Several sets of simulations were carried out with different bottom boundary temperatures and different formation permeabilities for the two deeper layers. The results indicate that the present temperature (T) and pressure distributions in the Larderello field require deep reservoir rocks with higher permeability than the overlying capping units and underlying intermediate crust. Permeability values of 1 mDarcy for the reservoir rocks are enough to allow fluid convection, if the temperature at 10 km depth is as high as 500 ± 50°C. The presence of localized zones with formation permeability 50–100 times higher than the surrounding rocks strongly favours the migration of over-pressurized fluids, which episodically break through the overburden, feeding the presently exploited geothermal fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Accaino F, Tinivella U, Rossi G, Nicolich R (2005) Geofluid evidence from analysis of deep crustal seismic data (Southern Tuscany, Italy). J Volcanol Geotherm Res 148:46–59

    Article  Google Scholar 

  • Accaino F, Nicolich R, Tinivella U (2006) Highlighting the crustal structure of the southern Tuscany by reprocessing the CROP 03 profile. Boll Geof Teor Appl 47(3):425–445

    Google Scholar 

  • Acocella V, Rossetti F (2002) The role of extensional tectonics at different crustal levels on granite ascent and emplacement: an example from Tuscany (Italy). Tectonophysics 354:71–83

    Article  Google Scholar 

  • Bailey RC (1990) Trapping of aqueous fluids in the deep crust. Geophys Res Lett 17:1129–1132

    Article  Google Scholar 

  • Baldi P, Bellani S, Ceccarelli A, Fiordelisi A, Squarci P, Taffi L (1995) Geothermal anomalies and structural features of southern Tuscany. In: proc world geothermal congress, Florence, Italy vol 2, pp 693–696

  • Baldi P, Bertini G, Ceccarelli A (1993) Geothermal fields of central Italy. Res Geol 16:69–81

    Google Scholar 

  • Barelli A, Bertini G, Buonasorte G, Cappetti G, Fiordelisi A (2000) Recent deep exploration results at the margins of the Larderello-Travale geothermal system. In: proc World Geothermal Congress, Kyushu-Tohoku, Japan, pp 965–970

  • Barzaghi R, Betti B, Borghi A, Sona G, Tornatore V (2002) The Italian quasi-geoid ITALGEO99. Boll Geodesia Scienze Affini 1:33–51

    Google Scholar 

  • Batini F, Burgassi PD, Cameli GM, Nicolich R, Squarci P (1978) Contribution to the study of the deep lithospheric profiles: deep reflecting horizons in Larderello-Travale geothermal field. Mem Soc Geol It 19:477–484

    Google Scholar 

  • Bellani S, Della Vedova B (2004) 2-D thermal modelling across the geothermal fields of Tuscany, Italy. Eos Trans, AGU, 85 (47) Fall Meeting, Abstract T43B–1326

  • Bellani S, Brogi A, Lazzarotto A, Liotta D, Ranalli G (2004) Heat flow, deep temperatures and extensional structures in the Larderello Geothermal Field (Italy): constraints on geothermal fluid flow. J Volcanol Geotherm Res 132:15–29

    Article  Google Scholar 

  • Bellani S, Magro G, Brogi A, Lazzarotto A, Liotta D (2005) Insights into the Larderello geothermal field: structural setting and distribution of thermal and 3He anomaly. In: proc World Geothermal Congress, Antalya, Turkey, pp 1–4

  • Brogi A, Lazzarotto A, Liotta D, Ranalli G (2003) Extensional shear zones as imaged by reflection seismic lines: The Larderello geothermal field (central Italy). Tectonophysics 363:127–139

    Article  Google Scholar 

  • Brogi A, Lazzarotto A, Liotta D, Ranalli D, CROP−18 Working Group (2005) Crustal structures in the geothermal areas of southern Tuscany (Italy): insights from CROP-18 deep seismic reflections lines. J Volcanol Geotherm Res 148:60–80

    Google Scholar 

  • Brunet C, Monié P, Jolivet L, Cadet JP (2000) Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 321:127–155

    Article  Google Scholar 

  • Carmignani L, Decandia FA, Fantozzi PL, Lazzarotto A, Liotta D, Meccheri M (1994) Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics 238:295–315

    Article  Google Scholar 

  • Carmignani L, Lazzarotto A, Brogi A, Conti P, Cornamusini G, Costantini A, Meccheri M, Sandrelli P (2004) Carta geologica della Toscana. Regione Toscana, Direzione Generale delle Politiche Territoriali e Ambientali, Servizio Geologico

  • Clauser C (2003) Numerical simulation of reactive flow in hot aquifers. SHEMAT and Processing SHEMAT. Springer, Berlin, pp 1–333

    Google Scholar 

  • Decandia FA, Lazzarotto A, Liotta D, Cernobori L, Nicolich R (1998) The Crop 03 traverse: insights on post-collisional evolution of northern Apennines. Mem Soc Geol It 52:427–439

    Google Scholar 

  • Della Vedova B, Marson I, Panza GF, Suhadolc P (1991) Upper mantle properties of the Tuscan-Tyrrhenian area: a key for understanding the recent tectonic evolution of the Italian region. Tectonophysics 195:311–318

    Article  Google Scholar 

  • Della Vedova B, Bellani S, Pellis G, Squarci P (2001) Deep temperatures and surface heat flow distribution. In: Vai GB, Martini IP (eds) Anatomy of an orogen: the Apennines and adjacent Mediterranean basins. Kluwer, Dordrecht, pp 65–76

    Google Scholar 

  • Dini A, Gianelli G, Puxeddu M, Ruggieri G (2005) Origin and evolution of Pliocene-Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos 81:1–31

    Article  Google Scholar 

  • Faust CR, Mercer JW (1979) Geothermal reservoir simulation 1. Mathematical models for liquid and vapor-dominated hydrothermal systems. Water Resour Res 15(1):23–30

    Article  Google Scholar 

  • Fournier RO (1991) The transition from hydrostatic to greater than hydrostatic fluid pressures in presently active continental hydrothermal systems in crystalline rock. Geophys Res Lett 18:955–958

    Article  Google Scholar 

  • Ghisetti F, Vezzani L (2002) Normal faulting, transcrustal permeability and seismogenesis in the Apennines (Italy). Tectonophysics 348:155–168

    Article  Google Scholar 

  • Gianelli G, Laurenzi MA (2001) Age and cooling rate of the geothermal system of Larderello. Geotherm Res Counc Trans 25:731–735

    Google Scholar 

  • Giese P, Wigger P, Morelli C, Nicolich R (1981) Seismische studien zur bestimmung der krustenstruktur-anomalien der Toskana. Commission European Communities, EUR, pp 1–108

  • Kennedy BM, Kharaka YK, Evans WC, Ellwood A, DePaolo DJ, Thordsen J, Ambats G, Mariner RH (1997) Mantle fluids in the San Andreas fault system, California. Science 278:1278–1281

    Article  Google Scholar 

  • Kennedy BM, Van Soest MC (2006) A helium isotope perspective on the Dixie Valley, Nevada hydrothermal system. Geothermics 35–1:26–43

    Article  Google Scholar 

  • Kühn M, Zeeb C, Gessner K (2006a) 2D or not 2D: are two dimensions enough to accurately model convective fluid flow through faults and surrounding host rocks? In: proc computational methods in water resources—XVI, Copenaghen, Denmark, pp 1–8

  • Kühn M, Dobert F, Gessner K (2006b) Numerical investigation of the effect of heterogeneous permeability distributions on free convection in the hydrothermal system at Mount Isa, Australia. Earth Planet Sci Lett 244:655–671

    Article  Google Scholar 

  • Liotta D, Ranalli G (1999) Correlation between seismic reflectivity and rheology in extended lithosphere: Southern Tuscany, inner northern Apennines, Italy. Tectonophysics 315:109–122

    Article  Google Scholar 

  • Liotta D, Cernobori L, Nicolich R (1998) Restricted rifting and its consistence with compressional structures: Results From Crop-3 Traverse (Northern Apennines, Italy). Terra Nova 10(1):16–20

    Article  Google Scholar 

  • Locardi E, Nicolich R (2005) Crust-mantle structures and Neogene-Quaternary magmatism in Italy Boll Geof Teor Appl 46(2–3):169–180

    Google Scholar 

  • Magro G, Ruggieri G, Gianelli G, Bellani S, Scandiffio G (2003) Helium isotopes in paleofluids and present-day fluids of the Larderello geothermal field: constraints on the heat source. J Geophys Res 108-B1:1–12

    Google Scholar 

  • Marinelli G, Barberi F, Cioni R (1993) Sollevamenti Neogenici ed intrusioni acide della Toscana e del Lazio settentrionale. Mem Soc Geol It 49:279–288

    Google Scholar 

  • Marson I, Cernobori L, Nicolich R, Stoka M, Liotta D, Palmieri F, Velicogna I (1998) CROP03 profile: a geophysical analysis of data and results. Mem Soc Geol It 52:123–137

    Google Scholar 

  • Mattei M, Kissel C, Funiciello R (1996) No tectonic rotation of the Tuscan Tyrrhenian margin (Italy) since late Messinian. J Geophys Res 101:2835–2845

    Article  Google Scholar 

  • Meyer CA, McClintock RB, Silvestri GJ, Spencer RC (1979) ASME steam table—thermodynamic and transport properties of steam. American Society of Mechanical Engineers, New York

    Google Scholar 

  • Mongelli F, Puxeddu M, Zito G (1989) Anomalie residue del flusso di calore nella fascia tosco-laziale: interpretazione della anomalia di Larderello. In: proc VIII Conference “Gruppo Nazionale Geofisica della Terra Solida”, Rome, pp 1147–1170

  • Nicolich R (1989) Crustal structures from seismic studies in the frame of the European Geotraverse (southern segment) and CROP projects. In: Boriani A, Bonafede M, Piccardo GB, Vai GB (eds). The lithosphere in Italy: advances in earth science research. Accademia Nazionale dei Lincei, Roma pp 41–61

    Google Scholar 

  • Nicolich R, Marson I (1994) Caratteri geofisici delle strutture crostali nella Provincia Geotermica Toscana. Studi Geologici Camerti 1:163–168

    Google Scholar 

  • Panza GF, Pontevivo A, Chimera G, Raykova R, Aoudia A (2003) The lithosphere-asthenosphere: Italy and surroundings. Episodes 26:169–174

    Google Scholar 

  • Pascucci V, Merlini S, Martini IP (1999) Seismic stratigraphy of the Miocene–Pleistocene sedimentary basins of the northern Tyrrhenian sea and western Tuscany (Italy). Basin Res 11:337–356

    Article  Google Scholar 

  • Piromallo C, Morelli A (1998) P-wave propagation heterogeneity and earthquake location in the Mediterranean region. Geophys J Int 135:232–254

    Article  Google Scholar 

  • Scrocca D, Doglioni C, Innocenti F, Manetti P, Mazzotti A, Bertelli L, Burbi L, D’Offizi S (eds) (2003) CROP ATLAS—Seismic Reflection Profiles of the Italian Crust. Memorie Descrittive della Carta Geologica d’Italia, vol LXII, Dipartimento Difesa del Suolo, APAT, Roma, pp 1–194

  • Serri G, Innocenti F, Manetti P (1993) Geochemical and petrological evidence of the subduction and delaminated Adriatic continental lithosphere in the genesis of Neogene–Quaternary magmatism of central Italy. Tectonophysics 223:117–147

    Article  Google Scholar 

  • Sinigoi S, Quick JE, Peressini G, Mayer A (2003) An example of the Apulian lower crust: the Ivrea-Verbano zone.Transalp conference ext. abs. of oral and poster presentations. Mem Sci Geol 54:101–104

    Google Scholar 

  • Spakman W (1990) Tomographic images of the upper mantle below central Europe and the Mediterranean. Terra Nova 2:542–553

    Article  Google Scholar 

  • Straus JM , Schubert G (1977) Thermal convection of water in a porous media: effects of temperature- and pressure-dependent thermodynamics and transport properties. J Geopys Res 82:325–333

    Article  Google Scholar 

  • Tinivella U, Accaino F, Rossi G, Nicolich R (2005) Petrophysical analysis of CROP-18 crustal seismic data. Boll Soc Geol It 3:205–211

    Google Scholar 

  • Toulokian YS, Judd WR, Roy RF (eds) (1981) Physical properties of rocks and minerals. MacGrow Hill/CINDAS data series on material properties vol II-2 Purdue Research Foundation, pp 1:549

  • Vanorio T, De Matteis R, Zollo A, Batini F, Fiordelisi A, Ciulli B (2004) The deep structure of the Larderello-Travale geothermal field from 3D microearthquake traveltime tomography. Geophys Res Lett 31: L07613, DOI: 10.1029/2004GL019432

  • Velicogna I, Marson I, Suhadolc P (1996) Morfologia della Moho da gravità, topografia ed isostasia. In: proc XIV conference “Gruppo Nazionale Geofisica della Terra Solida” Roma vol 1, pp 405–418

  • Villa I, Puxeddu M (1994) Geocronology of the Larderello geothermal field: New data and the ‘‘closure temperature’’ issue. Contrib Mineral Petrol 115:415–426

    Article  Google Scholar 

  • Zoth G, Hänel R (1988) Appendix. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer, Dordrecht, pp 447–468

    Google Scholar 

Download references

Acknowledgments

We are grateful to several colleagues and friends for constructive criticism and discussion. We thank Prof. Izzy Kutasov and an anonymous reviewer for their constructive criticism and precious comments. This work was partly supported by COFIN-MIUR 2006 funding to the first authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Della Vedova.

Appendix 1

Appendix 1

The numerical modelling was performed using the commercial code SHEMAT 7.1 (Clauser 2003) considering various boundary conditions, inner geometries and formation permeabilities.

SHEMAT 7.1 code (Clauser 2003) was used to carry out the simulations of coupled heat and fluid fluxes. The solute transport was not simulated, although we assumed a purely speculative average density of the fluid of 1,100 kg m−3 (at room T). The 3-D regional conductive-convective model was realized by means of unsteady forward simulations, under the assumptions of impervious and isothermal top and bottom boundaries, lateral adiabatic faces and variable internal physical properties.

Solving the non stationary problem consists of finding the T, pressure and fluid velocity fields within the model domain, assuming appropriate initial and boundary conditions.

The code SHEMAT was used to simulate both the solid-state heat conduction and the conductive-convective flow of pore fluids. Non-stationary equations of non-isothermal hydrodynamics, accounting for phase transition, were used to carry out the three dimensional modelling of the convective flow. The most important assumptions were:

  • flow conforms to Darcy’s law;

  • effects of the capillary pressure are neglected;

  • both phases (solid matrix, liquid) are considered to be in local thermal equilibrium;

  • fluid flow does not affect the solid matrix.

The problem is described by a system of mass and energy conservation equations in Cartesian coordinates for convective two-phase flow through a porous medium (Faust and Mercer 1979):

$$ \nabla \cdot {\left( {\,\underline{{\lambda \,}} \nabla T - \rho _{f} \,c_{f} \,T\,\ifmmode\expandafter\vec\else\expandafter\vec\fi{v}\,} \right)} = \frac{{\partial T}} {{\partial t}}{\left[ {\,n\,\rho _{f} \,c_{f} + {\left( {1 - n} \right)}\;\rho _{m} \,c_{m} } \right]} $$
(1)
$$ {\underbrace {\rho _{f} \,g{\left( {\alpha + n\,\beta } \right)}}_{{S_{S} }}}\frac{{\partial h_{0} }} {{\partial t}} = \nabla \cdot {\left[ {{\underbrace {\frac{{\rho _{f} \,g\,\underline{k}}} {\mu }}_{\underline{K}}}{\left( {\nabla h_{0} + \rho _{r} \,\nabla z} \right)}} \right]} $$
(2)

where

α :

rock compressibility (Pa−1);

β :

fluid compressibility (Pa−1);

c :

specific heat capacity (J kg−1 K−1);

g :

gravitational acceleration (m s−2);

h :

hydraulic potential, head (m);

λ :

tensor of thermal conductivity (W m−1 K−1);

k :

tensor of permeability (m2);

K :

tensor of hydraulic conductivity (m s−1);

n :

porosity (/);

ρ:

density (kg m−3);

S S :

specific storage coefficient (m−1);

T :

temperature (K);

t :

time (s);

\( \ifmmode\expandafter\vec\else\expandafter\vec\fi{v} \) :

Darcy (filtration) velocity; specific discharge (m s−1).

Subscripts

f :

liquid;

m:

matrix;

0:

reference condition.

SHEMAT assumes the properties of water as a function of fluid pressure and T for pressure greater than saturation pressure or T lower than critical T, limited to pressure and T below 100 MPa and 1,000°C, respectively (Meyer et al. 1979). SHEMAT accounts for the T dependence of rock thermal conductivity according to Zoth and Hänel (1988). Examples of the application of the SHEMAT code may be found in Clauser (2003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della Vedova, B., Vecellio, C., Bellani, S. et al. Thermal modelling of the Larderello geothermal field (Tuscany, Italy). Int J Earth Sci (Geol Rundsch) 97, 317–332 (2008). https://doi.org/10.1007/s00531-007-0249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0249-0

Keywords

Navigation