Skip to main content

Advertisement

Log in

Estimating the viscosity and Prandtl number of the Tso Morari crystalline gneiss dome, Indian western Himalaya

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Tso Morari crystalline (TMC) gneiss dome in the Indian Himalaya extruded from a depth of ~120 km through an inclined subduction channel of sub-elliptical cross-section at the leading edge of the Indian plate. The velocity profile of this gneiss dome is derived after (1) presuming its incompressible Newtonian rheology, (2) finding the “best fit” of the outcrop of the gneiss dome to an ellipse, (3) taking into account different lithologies to have existed at the top of the extruding gneiss body, (4) considering the extrusion to have been driven by the buoyant push of the denser mantle beneath the lighter gneiss, and (5) assigning a range of plausible densities for different litho-units. Fitting the known rates of extrusion—from a few centimetres up to about one-hundredth of a millimetre per year—from ~53 Ma onwards of this gneiss dome to its velocity profile constrains its maximum possible viscosity to ~7.5 × 1022 Pa s. This magnitude is 102–104 times higher than previous estimates for gneisses and granites. Alternative explanations of our data are the following: (1) There was a fall in extrusion rates of the TMC gneiss from 53 to <30 Ma because of an increase in the estimated maximum viscosity from 6.2 × 1020 to 7.5 × 1022 Pa s, possibly indicating a fall in temperature and/or compositional change of the TMC gneiss. (2) Lower the extrusion rates, higher are the estimated viscosities. (3) The TMC gneiss was more viscous probably due to its eclogite content. (4) The estimated maximum viscosity is ~102 times higher than that in collision zones and 102–104 times than that in the Tibetan lower crust, but broadly conforms to that for the crustal channel, and average lithospheric and asthenospheric values. The high magnitude of maximum possible Prandtl number of ~1028 of the TMC gneiss might be related to isothermal decompression of the gneiss during its extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ábalos B, Fountain DM, Ibarguchi JIG et al (2011) Eclogite as a seismic marker in subduction channels: seismic velocities, anisotropy, and petrofabric of Cabo Ortegal eclogite tectonites (Spain). GSA Bull 123:439–456

    Article  Google Scholar 

  • Anderson DL (2007) The eclogite engine: chemical geodynamics as a Galileo thermometer. In: Foulger GR, Jurdy DM (eds) Plates, plumes and planetary processes. Geol Soc Am Sp Pap, pp 47–64

  • Austrheim H (1991) Eclogite formation and dynamics of crustal roots under continental collision zones. Terra Nova 3:492–499

    Article  Google Scholar 

  • Babuška V, Fiala J, Mayson DJ et al (1978) Elastic properties of eclogite rocks from the Bohemian massif. Stuclia Geoph et Geod 22:348–361

    Article  Google Scholar 

  • Barnhoorn A, van der Wal W, Drury MR (2011) Upper mantle viscosity and lithospheric thickness under Iceland. J Geodyn Res 52:260–270

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH et al (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen et al (2004) Crustal channel flows: 1. Numerical model with applications to the tectonics of the Himalaya-Tibetan Orogen. J Geophys Res 109:B06406. doi:10.1029/2003JB002809

  • Beaumont C, Jamieson RA, Butler JP et al (2009) Crustal structure: a key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett 287:116–129

    Article  Google Scholar 

  • Bose MK (1997) Igneous petrology. World Press, Cleveland, p 227

  • Brownlee SJ, Hacker BR, Salisbury M et al (2011) Predicted velocity and density structure of the exhuming Papua New Guinea ultrahigh pressure terrane. J Geophys Res 116:B08206

    Article  Google Scholar 

  • Bruthans J, Filippi M, Geršl M et al (2006) Holocene marine terraces on two salt diapirs in the Persian Gulf, Iran: age, depositional history and uplift rates. J Quater Sci 21:843–857

    Article  Google Scholar 

  • Burchardt S, Koyi H, Schmeling H (2011) Strain pattern within and around denser blocks sinking within Newtonian salt structures. J Struct Geol 33:145–153

    Article  Google Scholar 

  • Carmichael RS (1984) Handbook of physical properties of rocks, vol III. CRC Press, Florida

    Google Scholar 

  • Carmichael RS (1989) Practical handbook of physical properties of rocks & minerals. CRC Press, Florida

  • Christensen U (2001) Geodynamic models of deep subduction. In: Rubie DC, Dan der Hilst RD (eds) Processes and consequences of deep subduction. Physics Earth Planetary Interior 127:25–34

  • Clark RJ (2005) Structural constraints on the exhumation of the Tso Morari Dome. Massachusetts Institute of Technology. Unpublished B.S. Thesis, pp 1–51

  • Clark MK, Royden LH (2000) Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28:703–706

    Article  Google Scholar 

  • Cloos M, Shreve R (1988a) Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl Geophys 128:455–500

    Article  Google Scholar 

  • Cloos M, Shreve RL (1988b) Subduction-channel flow mode of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins; Part II, implications and discussions. Pure Appl Geophys 128:501–545

    Article  Google Scholar 

  • Coleman RG, Wang X (1995) Overview of the geology and tectonics of UHPM. In: Coleman RG, Wang X (eds) Ultrahigh pressure metamorphism. Cambridge University Press, Cambridge, pp 1–23

  • Copley A, Avouac J-P, Wernicke BP (2011) Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet. Nature 472:79–81. doi:10.1038/nature09926

    Article  Google Scholar 

  • Corrie SL, Kohn MJ, Vervoort JD (2010) Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal: P-T-t path and tectonic implications. Earth Planet Sci Lett 289:406–416

    Article  Google Scholar 

  • Critescu ND, Hunsche U (1998) Time effects in Rock mechanics. Series: materials, modelling and Computation. Wiley, Chichester

  • Davies PA (1980) Laboratory modelling of mantle flows. In: Davies PA, Runcorn SK (eds) Mechanisms of continental drift and plate tectonics. Academic Press, London, pp 225–244

  • De Meer S, Drury MR, de Bresser JHP et al. (2002) Current issues and new developments in deformation mechanisms, rheology and tectonics. In: De Meer S, Drury MR, de Bresser (eds) Deformation mechanisms, rheology and tectonics: current status and future perspectives. Geol Soc, London, Sp Publ 200:1–27

  • de Sigoyer J, Chavagnac V, Blichert-Toft J et al (2000) Dating Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of the Tso Morari eclogites. Geology 28:487–490

    Article  Google Scholar 

  • de Sigoyer J, Guillot G, Dick P (2004) Exhumation of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): a case study. Tectonics 23:TC3003

    Google Scholar 

  • Dingwell DB, Scarfe M, Cronin D (1985) The effect of fluorine on viscosities in the system Na20–AI20 3 –SiO2: implications for phonolites, trachytes and rhyolites. Am Mineral 70:80–87

    Google Scholar 

  • Dixon JM (1987) Mantled gneiss domes. In: The encyclopedia of structural geology and plate tectonics. In: Suyfert CK (ed) Encyclopedia of earth sciences, vol X. Van Nostrand Reinhold Company, New York, pp 398–411

  • Doherty J (2011) Modelling: picture perfect or abstract art? Ground Water 49:455

    Article  Google Scholar 

  • Dong S (2002) On continent-continent point-collision and ultrahigh-pressure metamorphism. Acta Geol Sinica 76:69–80

    Google Scholar 

  • Druguet E, Carreras J (2006) Analog modeling of syntectonic leucosomes in mylonitic schists. J Struct Geol 28:1734–1747

    Article  Google Scholar 

  • Epard J-L, Steck A (2008) Structural development of the Tso Morari ultra-high pressure nappe of the Ladakh Himalaya. Tectonophysics 451:242–264

    Article  Google Scholar 

  • Ernst WG (2001) Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices-implications for arcs and continental growth. In: Rubie DC, Dan der Hilst RD (eds) Processes and consequences of deep subduction. Physics Earth Planetary Interior 127:253–275

  • Ernst WG, Liou JG (2008) High- and ultrahigh-pressure metamorphism—past results and future prospects: Am Mineral 93:1771–1786

    Google Scholar 

  • Ernst WG, Maruyama S, Wallis S (1997) Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust. Proc Natl Acad Sci 94:9532–9537

    Article  Google Scholar 

  • Farmer IW (1968) Engineering properties of rocks. E.&F.N. Spon Ltd, London 15

    Google Scholar 

  • Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE Trans Pattern Anal Mach Intell 21:476–480

    Article  Google Scholar 

  • Fletcher R (1972) Application of a mathematical model to the emplacement of mantled gneiss domes. Am J Sci 272:197–216

    Article  Google Scholar 

  • Fossen H (2010) Structural geology. Cambridge University Press, Cambridge

  • Fowler CMR (2005) The solid earth: an introduction to global geophysics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Frisch W, Meschede M (2010) Plate tectonics. Springer, Berlin, p 112

  • Gao S, Kern H, Jin Z-M et al (2001) Poisson’s ratio of eclogite: the role of retrogression. Earth Planet Sci Lett 192:523–531

    Article  Google Scholar 

  • Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44:1–13

    Article  Google Scholar 

  • Gerya T (2011) Future directions in subduction modelling. J Geodyn 52:344–378

    Google Scholar 

  • Gerya TV, Meilick F (2011) Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J Meta Geol 29:7–31

    Article  Google Scholar 

  • Gerya TV, Stöckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics 21:1056

    Article  Google Scholar 

  • Gerya TV, Perchuk LL, Burg J-P (2008) Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust–mantle associations in collision belts. Lithos 103:236–256

    Article  Google Scholar 

  • Gokarn SG (2003) Electrical conductivity patterns along transects over the Indian lithospheric domains of differing temporal evolution: a review. In: Mahadevan TM, Arora BR, Gupta KR (eds) Indian continental lithosphere: emerging research trends. Mem Geol Soc India 53:129–147

  • Grasemann B, Edwards M A, Wiesmayr G (2006) Kinematic dilatancy effects on orogenic extrusion. In: Law RD, Searle MP, Godin L (eds) Channel flow, extrusion and extrusion in continental collision zones, vol 268. Geol Soc, London, Special Publication, pp 183–199

  • Grigull S, Krohe A, Moos C et al (2011) “Order from chaos”: a field-based estimate on bulk rheology of tectonic melanges formed in subduction zones. Tectonophysics (in press)

  • Guillot S, Allemand P (2002) Two-dimensional thermal modelling of the early tectonometamorphic evolution in central Himalaya. J Geodyn 34:77–98

    Google Scholar 

  • Guillot S, de Sigoyer J, Lardeaux JM et al (1997) Eclogitic metasediments from the Tso Morari area (Ladakh Himalaya): evidence for continental subduction during India—Asia convergence. Contrib Mineral Petrol 128:197–212

    Article  Google Scholar 

  • Guillot S, Hattori K, de Sigoyer D (2000) Mantle wedge serpentinization and exhumation of eclogites: insights from eastern Ladakh, northwest Himalaya. Geology 28:199–202

    Article  Google Scholar 

  • Guillot S, Hattori K, de Sigoyer J et al (2001) Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth Planet Sci Lett 193:115–127

    Article  Google Scholar 

  • Guillot S, Mahéo G, de Sigoyer J et al (2008) Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics 451:225–241

    Article  Google Scholar 

  • Guillot S, Hattori K, Agard P et al (2009) Exhumation processes in Oceanic and continental subduction contexts: a review. In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Springer, Berlin, pp 175–205

  • Harinarayana T, Azeez KKA, Murthy DN et al (2006) Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies. J App Geophys 58:280–295

    Article  Google Scholar 

  • Harris N (2007) Channel flow and the Himalaya-Tibetan orogen: a critical review. J Geol Soc London 164:511–523

    Article  Google Scholar 

  • Jackson MPA, Talbot CJ (1986) External shapes, strain rates and dynamics of salt structures. Geol Soc Am Bull 97:305–325

    Article  Google Scholar 

  • Jain AK, Singh S (2009) Geology and tectonics of the Southeastern Ladakh and Karakoram. Geological Society of India, Bangalore, pp 1–181

  • Jarvis GT, Peltier WR (1989) Convection models and geophysical observations. In: Convection: plate tectonics and global dynamics. In: Peltier WR (ed) The fluid mechanics of astrophysics and geophysics. Gordon and Breach Science Publishers, vol 4, pp 479–593

  • Ji S (2002) Eclogite rheology: implications for subducted lithosphere: comment. Geology 30:483

    Article  Google Scholar 

  • Jin Z-M, Zhang J, Green HM II et al (2001) Eclogite rheology: implications for subducted lithosphere. Geology 29:667–670

    Article  Google Scholar 

  • Jin Z-M, Zhang J, Green HM II et al (2002) Eclogite rheology: implications for subducted lithosphere: reply. Geology 30:484

    Article  Google Scholar 

  • Jolivet L, Faccenna C, D’Agostino N et al (1999) The kinematics of back-arc basins, examples from the Tyrrhenian, Aegean and Japan Seas. In: Mac Niocaill C, Ryan PD (eds) Continental tectonics. Geol Soc, London, Sp Pub 164:21–53

  • Kaneko Y, Katayama I, Yamamoto H et al (2003) Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia. J Meta Geol 21:589–599

    Article  Google Scholar 

  • Karato S-I (2008) Deformation of earth materials. An introduction to the rheology of solid earth. Cambridge University Press, Cambridge, pp 336–337

  • King SD (2001) Subduction zones: observations and geodynamic models. In: Rubie DC, Dan der Hilst RD (eds) Processes and consequences of deep subduction. Physics Earth Planetary Interior 127:9–24

  • Kohn MJ, Parkinson CD (2002) Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology 30:591–594

    Article  Google Scholar 

  • Kushiro I (1984) Structures and some physical properties of silicate melts of geological interest. In: Sunagawa I (ed) Material science of the earth’s interior. Terra Scientific Publishing Company, Tokyo, pp 39–60

    Google Scholar 

  • Landholt-Bornstein N (1982) Numerical data and functional relationships in science and technology. In: Angenheister G (ed) Physical properties of rocks, subvolume A, vol 1. Springer, Berlin, p 103, 116

  • Leech ML, Singh S, Jain AK et al (2005) The onset of the India–Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett 234:83–97

    Article  Google Scholar 

  • Li H, Liu J, Tian Z (2008) Fluid/melt activities and a partial melting process during exhumation of the subducted continental crust in the Sulu UHP terrane, China. In: Session: UHP-02 Collisional orogeny, ultrahigh-pressure metamorphism and crustal melting. 33rd International Geological Congress, Oslo, Norway

  • Liou JG, Tsujimori T, Zhang RY et al (2004) Global UHP metamorphism and continental subduction/collision: the Himalayan model. Int Geol Rev 46:1–27

    Article  Google Scholar 

  • Lister G, Forster M (2009) Tectonic mode switches and the nature of orogenesis. Lithos 113:274–291

    Google Scholar 

  • Little TA, Hacker BR, Gordon SM et al (2011) Diapiric exhumation of Earth’s youngest (UHP) eclogites in the gneiss domes of the D’Entrecasteaux Islands, Papua New Guinea. Tectonophysics (in press)

  • Liu J, Liu W, Kai Y (2008) The release of H2O from ultrahigh-pressure (UHP) granitic rocks during the process of exhumation: Implicated by chlorine-zoning of apatite and amphibole. In: Session: UHP-02 Collisional orogeny, ultrahigh-pressure metamorphism and crustal melting. 33rd International Geological Congress, Oslo, Norway

  • Massonne H-J (2008) Hydration, dehydration, and melting of upper crustal rocks at high pressure and ultrahigh pressure conditions. In: Session: UHP-02 collisional orogeny, ultrahigh-pressure metamorphism and crustal melting. 33rd International Geological Congress, Oslo, Norway

  • McCall GJM (2005) Crust. In: Shelley RC, LCocks RM, Pimer IR (eds) Encyclopedia of geology. Elsevier, Amsterdam, pp 403–409

  • Meyers RA (ed) (1992) Encyclopedia of physical science and technology, vol 4. Academic Press, Orlando, pp 496–499

  • Middleton GV, Wilcock PR (1994) Mechanics in the earth and environmental sciences. Cambridge University Press, Cambridge, pp 416–418

  • Mukherjee S (2010a) Structures in Meso- and Micro-scales in the Sutlej section of the Higher Himalayan Shear Zone, Indian Himalaya. e-Terra 7:1–27

    Google Scholar 

  • Mukherjee S (2010b) Microstructures of the Zanskar Shear Zone. Earth Sci India 3:9–27

    Google Scholar 

  • Mukherjee S (2011a) Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. Int J Earth Sci (submitted)

  • Mukherjee S (2011b) Estimating the viscosity of rock bodies—a comparison between the Hormuz and the Namakdan Salt Diapirs in the Persian Gulf, and the Tso Morari Gneiss Dome in the Himalaya. The J Indian Geophys Union 15:161–170

    Google Scholar 

  • Mukherjee S (2012a) Simple shear is not so simple! Kinematics and shear senses in Newtonian viscous simple shear zones. Geol Mag (in press)

  • Mukherjee S (2012b) Kinematics of “top-to-down” simple shear model in a Newtonian viscous rheology. J Indian Geophys Union (submitted)

  • Mukherjee (2012c) Viscous dissipation pattern in incompressible Newtonian simple shear zones- analytical model & application in the Higher Himalaya. Geol Mag (Submitted)

  • Mukherjee S, Koyi HA (2010a) Higher Himalayan Shear Zone. Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci 99:1267–1303

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2010b) Higher Himalayan Shear Zone, Zanskar section-microstructural studies & extrusion mechanism by a combination of simple shear & channel flow. Int J Earth Sci 99:1083–1110

    Article  Google Scholar 

  • Mukherjee S, Mulchrone K (2011) Estimation of viscosity of the Tso Morari Gneiss Dome, western Indian Himalaya. Session: regional studies. Annual meeting of the “Tectonic Studies Group”, Department of Earth Sciences, Durham University, Durham, UK, pp 47, 05–07 January 2011 (Abstract)

  • Mukherjee BK, Sachan HK (2004) Garnet response diamond pressure metamorphism from Tso-Morari region, Ladakh, India. 19th Himalaya-Karakoram-Tibet Workshop

  • Mukherjee B, Sachan HK (2009) Fluids in coesite-bearing rocks of the Tso Morari Complex, NW Himalaya: evidence for entrapment during peak metamorphism and subsequent uplift. Geol Mag 146:876–889

    Article  Google Scholar 

  • Mukherjee S, Talbot CJ, Koyi HA (2010) Estimating the viscosities of two salt diapirs in the Persian Gulf: Hormoz & Namakdan. Geol Mag 147:497–507

    Article  Google Scholar 

  • Mukherjee S, Jain L, Samajdar I et al (2011) Grain-scale strain variation in quartz in the Tso Morari Gneiss Dome (Indian western Himalaya) supports its channel flow extrusion. ICOTOM Conference. IIT Bombay (Abstract)

  • Mulchrone KF, Choudhury KR (2004) Fitting an ellipse to an arbitrary shape: implications for strain analysis. J Struct Geol 26:143–153

    Article  Google Scholar 

  • Murphy MA (2002) Orogen-parallel extension as expressed by the development of gneiss domes: an example from the Himalaya. Denver annual meeting (October 27–30, 2002). Thermal and mechanical significance of gneiss domes in the evolution of Orogens. Colorado Convention Center. URL: http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_42867.htm. Accessed on 24-March-2010

  • Nabelek PI, Whittington AG, Hofmeister AM (2010) Strain heating as a mechanism for partial melting and ultrahigh temperature metamorphism in convergent orogens: implications of temperature-dependent thermal diffusivity and rheology. J Geophys Res 115:B12417

    Article  Google Scholar 

  • O’Brien P, Zotov N, Law R et al (2001) Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology 29:435–438

    Article  Google Scholar 

  • Omori S, Komabayashi T (2007) Subduction zone: the water channel to the mantle, chap 5. In: Yuen DA, Maruyama S, Karato S-I, Windley BF (eds) Superplumes: beyond plate tectonics. Springer, Berlin, pp 113–138

  • Pai S-I (1956) Viscous flow theory I-laminar flow. D. Van Nostrand, New Jersey, p 51

    Google Scholar 

  • Papanastasiou CT, Georgiou GC, Alexandrou AN (2000) Viscous fluid flow. CRC Press, Florida, p 253

    Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin, p 366

    Google Scholar 

  • Philpotts AR, Ague JJ (2009) Principles of igneous and metamorphic petrology, 2nd edn. Cambridge University Press, Cambridge 22

    Google Scholar 

  • Rai SS, Pristley K, Gaur VK et al (2006) Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys Res Lett 33:LI5308

    Google Scholar 

  • Ramberg H (1972) Theoretical models of density stratification and diapirism in the Earth. J Geophys Res 77:877–889

    Article  Google Scholar 

  • Ramberg H (1981) Gravity, deformation and the Earth’s crust in theory, experiments and geological applications, 2nd edn. Academic Press, London

    Google Scholar 

  • Ranalli G (1995) Rheology of the Earth, 2nd edn. Chapman & Hall, London, p 371

    Google Scholar 

  • Ravikant V, Pal T, Das D (2004) Chromites from the Nidar ophiolite and Karzok complex, Transhimalaya, eastern Ladakh: their magmatic evolution. J Asian Earth Sci 24:77–184

    Article  Google Scholar 

  • Ray A, Srivastava DC (2008) Non-linear least squares ellipse fitting using the genetic algorithm with applications to strain analysis. J Struct Geol 30:1593–1602

    Article  Google Scholar 

  • Roselle GT, Engi M (2002) Ultra high pressure (UHP) terrains: lessons from thermal modeling. Am J Sci 302:410–441

    Article  Google Scholar 

  • Rutter EH, Brodie KH, Irving DH (2006) Flow of synthetic, wet, partially molten ‘‘granite’’ under undrained conditions: An experimental study. J Geophys Res 111:B06407. doi:10.1029/2005JB004257

    Article  Google Scholar 

  • Rutter EH, Mecklenburgh J, Brodie KH (2011) Rock mechanics constraints on mid-crustal low-viscosity flow beneath Tibet. In: Prior DJ, Rutter EH, Tatham DJ (eds) Deformation mechanisms, rheology and tectonics: microstructures, mechanics and anisotropy. Geol Soc, London, Sp Pub, 360:329–336

  • Sachan BK, Mukherjee BK, Ahmad T (2005) Cold subduction of the Indian continental crust: evidence from Tso-morari region, Ladakh, India. Himal Geol 26:25–32

    Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (1997) Rheological properties of granitic magmas in their crystallization range. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 11–29

  • Scambelluri M, Pettke T, van Roermund HLM (2008) Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. Geology 36:59–62

    Article  Google Scholar 

  • Schlup M, Carter A, Cosca M et al (2003) Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission-track ages: the Indus river-Tso Morari transect, NW Himalaya. J Geol Soc London 160:385–399

    Article  Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the earth and planets. Part I. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schulmann K, Lexa O, Štípská P et al (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Meta Geol 26:273–297

    Article  Google Scholar 

  • Schultz-Ela DD, Walsh P (2002) Modeling of grabens extending above evaporites in Canyonlands National Park, Utah. J Struct Geol 24:247–275

    Article  Google Scholar 

  • Schwartz S, Allemand P, Guillot S (2001) Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif (Western Alps). Tectonophysics 42:193–206

    Article  Google Scholar 

  • Searle MP, Hacker BR, Bilham R (2001) The Hindu Kush Seismic Zone as a Paradigm for the Creation of Ultrahigh-Pressure Diamondand Coesite-Bearing Continental Rocks. J Geol 109:143–153

    Article  Google Scholar 

  • Sharma RS (2008) Geohistory of Tso-Morari Crystalline, Eastern Ladakh, India: a plausible model for ultra-high pressure rocks in the Himalaya. Extended Abstracts: 23rd Himalayan-Karakoram-Tibet Workshop. Him J Sci 5:139–140

    Google Scholar 

  • Shaw HR (1965) Comments on viscosity, crystal settling, and convection in granitic magmas. Am J Sci 263:120–152

    Article  Google Scholar 

  • Shen Z-K (1995) Oblique subduction of a Newtonian fluid slab. Pure Appl Geophys 145:561–577

    Article  Google Scholar 

  • Stöckhert B (2002) Stress and deformation in subduction zones: insight from the record of exhumed metamorphic rocks. In: de Meer S, Drury MR, de Bresser JHP, Pennock GM (eds) Deformation mechanisms, rheology and tectonics: current status and future perspectives. Geol Soc London Sp Pub 200:255–274

  • Stöckhert B, Gerya TV (2005) Pre-collisional high pressure metamorphism and nappe tectonics at active continental margins: a numerical simulation. Terra Nova 17:102–110

    Article  Google Scholar 

  • Stöckhert B, Renner J (1998) Rheology of crustal rocks at ultrahigh pressure. In: Hacker BR, Liou JG (eds) When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks. Kluwer, London, pp 57–95

  • Stüwe K (2007) Geodynamics of the lithosphere. Springer, Berlin, p 39 (231, 325)

  • Takada U, Matsu’ura M (2007) Geometric evolution of a plate interface-branch fault system: its effect on the tectonic development of the Himalayas. J Asian Earth Sci 29:490–503

    Article  Google Scholar 

  • Talbot CJ (1999) Can field data constrain rock viscosities? J Struct Geol 21:949–957

    Article  Google Scholar 

  • Talbot CJ, Aftabi P (2004) Geology and models of salt extrusion at Qum Kuh, central Iran. J Geol Soc London 161:321–334

    Article  Google Scholar 

  • Talbot CJ, Medvedev S, Alavi M et al (2000) Salt extrusion rates at Kuh-e-Jahani, Iran: June 1994 to November 1997. In: Blundell DJ, Scott, AC (eds) Lyell: the Past is the Key to the Present. Geological Society, London, Special Publication no. 143, pp 93–110

  • Tarling DH (1978) Plate tectonics: present and past. In: Tarling DH (ed) Evolution of the earth’s crust. Academic Press, London, pp 1–443

    Google Scholar 

  • Teisser C (2011) Exhumation of deep orogenic crust. Lithosphere 3:439–443

    Article  Google Scholar 

  • Teisseyre R (1984) Creep processes, viscosity models, and the quality factor q in the earth’s interior, chap 3. In: Kopystyński JL, Teisseyre R (eds) Constitution of the earth’s interior. Elsevier, Amsterdam, pp 1–368

    Google Scholar 

  • Teyssier C, Whitney DL (2002) Gneiss domes and orogeny. Geology 30:1139–1142

    Article  Google Scholar 

  • Tiwari VM, Banerjee P, Singh B (2008) Density model and effective strength of lithosphere in the northwest Himalaya. In: Session: EIL-07 the earth’s gravity field—a key to surface tectonics and mantle geodynamics. 33rd International Geological Congress, Oslo, Norway

  • Tolkunova TL (1977) Lithosphere viscosity from data on recent vertical and isostatic movements of the earth’s crust. In: Mörner N-A (ed) Proceedings of earth rheology and late cenozoic movement. Wiley, Chichester, pp 135–141 (July 31–August 8)

  • Trap P, Faure M, Lin W et al (2011) Syn-collisional channel flow and exhumation of paleoproterozoic High Pressure rocks in the Trans-North China Orogen: the critical role of partial-melting and orogenic bending. Gond Res 20:498–515

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, Cambridge

  • USGS, internet reference. The earth’s crust, how thick is the earth’s crust? URL: http://earthquake.usgs.gov/research/structure/crust/index.php. Accessed on 29 June 2010

  • van der Beek P, Van Melle J, Guillot S et al (2009) Eocene Tibetan Plateau preserved in Northwest Himalaya. Nature Geosci 2:364–368

    Article  Google Scholar 

  • van der Straaten F, Schenk V, John T et al (2008) Blueschist-facies rehydration of eclogites (Tian Shan, NW-China): implications for fluid–rock interaction in the subduction channel. Chem Geol 255:195–219

    Article  Google Scholar 

  • Veniamin T, Natalia K (2008) Deformation as the cause of UHP-metamorphism of rocks in shear zones. In: Session: UHP-02 collisional orogeny, ultrahigh-pressure metamorphism and crustal melting. 33rd International Geological Congress, Oslo, Norway

  • von Huene R, Ranero CR, Scholl DW (2009) Convergent margin structure in high-quality geophysical images and current kinematic and dynamic models. In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Springer, Berlin, pp 137–157

  • Wagnar BH III, Jackson MPA (2011) Viscous flow during salt welding. Tectonophysics 510:309–326

    Article  Google Scholar 

  • Warren CJ, Beaumont C, Jamieson RA (2008a) Deep subduction and rapid exhumation: role of crustal strength and strain weakening in continental subduction and ultrahigh-pressure rock exhumation. Tectonics 27:TC6002

    Google Scholar 

  • Warren CJ, Beaumont C, Jamieson RA (2008b) Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet Sci Lett 267:129–145

    Article  Google Scholar 

  • Warren CJ, Beaumont C, Jamieson RA (2008c) Formation and exhumation of ultra-high pressure rocks during continental collision: role of detachment in the subduction channel. Geochem Geophys Geosys 9:Q04019

    Article  Google Scholar 

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge

  • Weidner DJ, Chen J, Xu Y et al (2001) Subduction zone rheology. Phys Earth Planet Interior 127:67–81

    Article  Google Scholar 

  • Weinberger R, Lyakhovsky V, Baer G et al (2006) Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: Implications for effective viscosity of rock salt. Geophys Geochem Geosys 7:Q05014

    Google Scholar 

  • Whitney DL, Teyssier C, Vanderhaeghe O (2004) Gneiss domes and crustal flow. In: Whitney DL, Teyssier C, Siddoway CS (eds) Gneiss domes in Orogeny. Geological Soc Am Special Publication 380:15–33

  • Whittington AG, Hofmeister AM, Nabelek PI (2009) Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458:319–321

    Article  Google Scholar 

  • Wynn TJ, Stewart SA (2005) Comparative testing of ellipse-fitting algorithms: implications for analysis of strain and curvature. J Struct Geol 27:1973–1985

    Article  Google Scholar 

  • Yamato P, Kaus BJP, Mouthereau F et al (2011) Dynamic constraints on the crustal-scale rheology of the Zagros fold belt, Iran. Geology 39:815–818

    Article  Google Scholar 

  • Yang H, Hu J, Li G et al (2011) Analysis of the crustal thickness and Poisson’s ratio in eastern Tibet from teleseismic receiver functions. Geophys J Int 186:1308–1388

    Google Scholar 

  • Yin A (2004) Gneiss domes and gneiss dome systems. In: Whitney DL, Teyssier C, Siddoway CS (eds) Gneiss domes in Orogeny. Geol Soc Am Spec Publ 380:15–33

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, extrusion history, and foreland sedimentation. Earth-Sci Rev 76:1–131

    Article  Google Scholar 

  • Zhang J, Green HW (2007a) Experimental investigation of eclogite rheology and its fabrics at high temperature and pressure. J Meta Geol 25:97–115

    Article  Google Scholar 

  • Zhang J, Green HW II (2007b) On the deformation of UHP eclogite: from laboratory to nature. Int Geol Rev 49:487–503

    Article  Google Scholar 

  • Zhang X-P, Wong LNY, Wang S-J et al (2011) Engineering Properties of quartz mica schist. Eng Geol 121:135–149

    Article  Google Scholar 

  • Zhao Z, Niu Y, Christensen NI et al (2011) Delamination and ultra-deep subduction of continental crust: constraints from elastic wave velocity and density measurement in ultrahigh-pressure metamorphic rocks. J Meta Geol 29:781–801

    Article  Google Scholar 

  • Zheng Y-F, Xia Q-X, Chen R-X et al (2011) Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev 107:342–374

    Article  Google Scholar 

Download references

Acknowledgments

SM acknowledges IIT Bombay’s flexible ‘Seed Grant’ (Spons/GS/SM-1/2009) and Department of Science and Technology’s (New Delhi) SERC Fast Track Scheme: SR/FTP/ES-117/2009. IIT Bombay’s travel grant enables SM to make an oral presentation (Mukherjee and Mulchrone 2011) at the Tectonic Studies Group Meeting in Durham in January 2011. S. Guillot made two rounds of thorough constructive review that led us to rearrange and fine tune arguments. The work benefited significantly from C.J. Talbot’s (retired from Uppsala University) mentoring and his meticulous corrections in English and the scientific contents as an informal reviewer. Manendra (IIT Bombay) cross-checked the Appendix B. S Murthy, A. Bandyopadhyay and R. Ghosh (IIT Bombay), R. S. Sharma (Indian National Science Academy Fellow), B. Mukherjee and K. Sen (Wadia Institute of Himalayan Geology), and K.C. Sahu (IIT Hyderabad) are thanked for discussions. S. Bhattacharyya (Alabama University) continues to supply research papers to SM (for more than a decade). Comments by P. Leat (Editor, Geological Magazine) helped to clarify a number of points. W.-C. Dullo’s chief editorial handling is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Mukherjee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Mulchrone, K.F. Estimating the viscosity and Prandtl number of the Tso Morari crystalline gneiss dome, Indian western Himalaya. Int J Earth Sci (Geol Rundsch) 101, 1929–1947 (2012). https://doi.org/10.1007/s00531-012-0758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0758-3

Keywords

Navigation