Skip to main content
Log in

Near N–S paleo-extension in the western Deccan region, India: Does it link strike-slip tectonics with India–Seychelles rifting?

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India–Seychelles rifting during Late Cretaceous–Early Paleocene, was studied, and the paleostress tensors were deduced. Near N–S trending shear zones, lineaments, and faults were already reported without significant detail. An E–W extension was envisaged by the previous workers to explain the India–Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N–S brittle shear zones and also those faults (sub-vertical, ~NE–SW/~NW–SE, and few ~N–S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N–S to ~NE–SW/~NW–SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW–SE/NE–SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N–S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N–S extension is put forward that refutes the popular view of E–W India–Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE–SW and ~NW–SE, with some ~N–S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of the DLIP erupted. Further studies of magma-rich passive margins with respect to timing and architecture of deformation and emplacement of volcanics are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Allègre CJ, Birck JL, Capmas F et al (1999) Age of the Deccan traps using 187Re–187Os systematics. Earth Planet Sci Lett 170:197–204

    Google Scholar 

  • Anderson EM (1951) The dynamics of faulting and dyke formation with special applications to Britain, 2nd edn. Oliver and Boyd, Edinburgh, p 206

    Google Scholar 

  • Angelier J (1979) Determination of the mean principal directions of stresses for a given fault population. Tectonophysics 56:T17–T26

    Google Scholar 

  • Angelier J (1984) Tectonic analysis of fault slip data sets. J Geophys Res Solid Earth 89:5835–5848

    Google Scholar 

  • Angelier J (1989) From orientation to magnitudes in paleostress determinations using fault slip data. J Struct Geol 11:37–50

    Google Scholar 

  • Angelier J (1994) Fault slip analysis and palaeostress reconstruction. In: Hancock PL (ed) Continental deformation. Pergamon Press, Oxford, pp 53–100

    Google Scholar 

  • Angelier J, Mechler P (1977) A graphic method applied to the localization of principal stresses for fault tectonics and seismology: the right dihedral method. Bull Soc Geol Fr 19:1309–1318

    Google Scholar 

  • Angelier J, Bergerat F, Chu HT et al (1990) Paleostress analysis as a key to margin extension: the Penghu Islands, South China Sea. Tectonophysics 183:161–176

    Google Scholar 

  • Armijo R, Cisternas A (1978) Un problème inverse en microtectonique cassante. C R Acad Sci D287:595–598

    Google Scholar 

  • Armitage JJ, Collier JS, Minshull TA et al (2011) Thin oceanic crust and flood basalts: India–Seychelles breakup. Geochem Geophys Geosyst 12:Q0AB07

    Google Scholar 

  • Auden JB (1949) Dykes in western India—a discussion of their relationships with the Deccan Trap. Trans Natl Inst Sci Ind 3:13–157

    Google Scholar 

  • Autin J, Bellahsen N, Husson L et al (2010) Analog models of oblique rifting in a cold lithosphere. Tectonics 29:TC6016

    Google Scholar 

  • Aydin A, DeGraff JM (1988) Evolution of polygonal fracture patterns in lava flows. Science 239:471–476

    Google Scholar 

  • Azeez KKA, Kumar TS, Basava S et al (2011) Hydrocarbon prospects across Narmada–Tapti rift in Deccan trap, central India: inferences from integrated interpretation of magnetotelluric and geochemical prospecting studies. Mar Pet Geol 28:1073–1082

    Google Scholar 

  • Babar M, Chunchekar R, Yadava MG, Ghute B (2012) Quaternary geology and geomorphology of Terna River Basin in west central India. Quat Sci J 61:156–167

    Google Scholar 

  • Babechuk MG, Widdowson M, Kamber BS (2014) Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps. India Chem Geol 363:56–75

    Google Scholar 

  • Baksi AK, Farrar E (1991) 40Ar/39Ar dating of the Siberian Traps, USSR: evaluation of the ages of the two major extinction events relative to episodes of flood-basalt volcanism in the USSR and Deccan Traps, India. Geology 19:461–464

    Google Scholar 

  • Balasubrahmanyan MN (2006) Geology and tectonics of India: an overview, Chapter 10. IAGR Mem No. 9, pp 125–130

  • Bastia R, Reeves C, Pundarika Rao D et al (2010) Paleogeographic reconstruction of East Gondwana and evolution of the Indian continental margin. DCS-DST News August 2–8

  • Basu DN, Banerjee A, Tamhane DM (1980) Source areas and migration trends of oil and gas in Bombay Offshore Basin, India. Am Assoc Pet Geol Bull 64:209–220

    Google Scholar 

  • Beane J, Turner C, Hooper P et al (1986) Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bull Volcanol 48:61–83

    Google Scholar 

  • Becker J, Sandwell D, Smith W et al (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32:355–371

    Google Scholar 

  • Bellahsen N, Daniel JM (2005) Fault reactivation control on normal fault growth: an experimental study. J Struct Geol 27:769–780

    Google Scholar 

  • Bellahsen N, Fournier M, d’Acremont E, et al (2006) Fault reactivation and rift localization: Northeastern Gulf of Aden margin. Tectonics 25:TC1007

    Google Scholar 

  • Berthé D, Choukroune P, Jegouzo P (1979) Orthogneiss, mylonite and non-coaxial deformation of granite: the example of the south Armorican shear zone. J Struct Geol 1:31–42

    Google Scholar 

  • Bhattacharji S, Chatterjee N, Wampler JM et al (1996) Indian intraplate and continental margin rifting, lithospheric extension, and mantle upwelling in Deccan flood basalt volcanism near the K/T boundary: evidence from Mafic Dike Swarms. J Geol 104:379–398

    Google Scholar 

  • Bhattacharya G (2013) The volcanic mesas of western Deccan, India. Geol Today 29:168

    Google Scholar 

  • Bhattacharya G, Chaubey A, Murty G et al (1994) Evidence for seafloor spreading in the Laxmi Basin, northeastern Arabian Sea. Earth Planet Sci Lett 125:211–220

    Google Scholar 

  • Biswas SK (1987) Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics 135:307–327

    Google Scholar 

  • Bondre N, Hart W, Sheth H (2006) Geology and geochemistry of the Sangamner mafic dike swarm, western Deccan volcanic province, India: implications for regional stratigraphy. J Geol 114:155–170

    Google Scholar 

  • Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117

    Google Scholar 

  • Brahmam NK, Negi JG (1973) Rift valleys beneath Deccan Traps (India). Geophys Res Bull 11:207

    Google Scholar 

  • Calvès G, Clift PD, Inam A (2008) Anomalous subsidence on the rifted volcanic margin of Pakistan: no influence from Deccan plume. Earth Planet Sci Lett 272:231–239

    Google Scholar 

  • Calvès G, Schwab AM, Huuse M et al (2011) Seismic volcanostratigraphy of the western Indian rifted margin: the pre-Deccan igneous province. J Geophys Res Solid Earth 116:B01101

    Google Scholar 

  • Campanile D (2007) The post-breakup evolution of the western Indian high-elevation passive margin. University of Glasgow, PhD thesis, pp 1–210

  • Campanile D, Nambiar CG, Bishop P et al (2008) Sedimentation record in the Konkan–Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin. Basin Res 20:3–22

    Google Scholar 

  • Caputo R (1995) Evolution of orthogonal sets of coeval extension joints. Terra Nova 7:479–490

    Google Scholar 

  • Caputo R (2010) Why joints are more abundant than faults. A conceptual model to estimate their ratio in layered carbonate rocks. J Struct Geol 32:1257–1270

    Google Scholar 

  • Carey E, Brunier B (1974) Analyse théorique et numérique d’une modeèle méchanique élémentaire appliqué a l’étude d’une population de failles. C R Acad Sci D 279:891–894

    Google Scholar 

  • Cater FW (1982) Intrusive rocks of the Holden and Lucerne Quadrangle, Washington—the relation of depth zones, composition, textures and emplacement of plutons. Geol Surv Prof Pap 1220:86

    Google Scholar 

  • Célérier B, Etchecopar A, Bergerat F et al (2012) Inferring stress from faulting: from early concepts to inverse methods. Tectonophysics 581:206–219

    Google Scholar 

  • Chadwick B, Vasudedev VN, Hegde GV (2003) Chitradurga Schist Belt and its adjacent Plutonic Rocks, NW of Tungabhadra, Karnataka: a duplex in the Late Archaean convergent setting of the Dharwar Craton. J Geol Soc India 61:645–663

    Google Scholar 

  • Chalapathy Rao N, Lehmann B (2011) Kimberlites, flood basalts and mantle plumes: new insights from the Deccan large igneous province. Earth-Sci Rev 107:315–324

    Google Scholar 

  • Chandrasekhar P, Martha TR, Venkateswarlu N et al (2011) Regional geological studies over parts of Deccan Syneclise using remote sensing and geophysical data for understanding hydrocarbon prospects. Curr Sci 100:95–99

    Google Scholar 

  • Chandrasekharam D (1985) Structure and evolution of the western continental margin of India deduced from gravity, seismic, geomagnetic and geochronological studies. Phys Earth Planet Int 41:186–198

    Google Scholar 

  • Chaubey A, Bhattacharya G, Murty G et al (1998) Early Tertiary seafloor spreading magnetic anomalies and paleo-propagators in the northern Arabian Sea. Earth Planet Sci Lett 154:41–52

    Google Scholar 

  • Chaubey AK, Gopala Rao D, Srinivas K et al (2002) Analyses of multichannel seismic reflection, gravity and magnetic data along a regional profile across the Central-Western Continental Margin of India. Mar Geol 182:303–323

    Google Scholar 

  • Chen Y, Jiang D, Zhu G (2014) The formation of micafish: a modeling investigation based on micromechanics. J Struct Geol. doi:10.1016/j.jsg.2013.12.005

  • Chenet A, Quidelleur X, Fluteau F et al (2007) 40K–40Ar dating of the main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet Sci Lett 263:1–15

    Google Scholar 

  • Ciancaleoni L, Marquer D (2006) Syn-extension leucogranite deformation during convergence in the eastern central Alps: example of the Novate intrusion. Terra Nova 18:170–180

    Google Scholar 

  • Collier J, Sansom V, Ishizuka O et al (2008) Age of Seychelles–India break-up. Earth Planet Sci Lett 272:264–277

    Google Scholar 

  • Collier JS, Minshull TA, Hammond JOS et al (2009) Factors controlling the degree of magmatism during continental breakup: new insights from a wide-angle seismic experiment across the conjugate Seychelles–Indian margins. J Geophys Res Solid Earth 114:B03101

    Google Scholar 

  • Correa-Gomes LC, Souza Filho CR, Martins CJFN et al (2001) Development of symmetrical and asymmetrical fabrics in sheet-like igneous bodies: the role of magma flow and wall-rock displacements in theoretical and natural cases. J Struct Geol 23:1415–1428

    Google Scholar 

  • Courtillot V, Besse J, Vandamme D et al (1986) Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet Sci Lett 80:361–374

    Google Scholar 

  • Courtillot V, Feraud G, Maluski H et al (1988) Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature 333:843–846

    Google Scholar 

  • Courtillot V, Jaupart C, Manighetti I et al (1999) On causal links between flood basalts and continental breakup. Earth Planet Sci Lett 166:177–195

    Google Scholar 

  • Courtillot V, Gallet Y, Rocchia R et al (2000) Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar Area of the Deccan large igneous province. Earth Planet Sci Lett 182:137–156

    Google Scholar 

  • Cox KG, Hawkesworth CJ (1984) Relative contribution of crust and mantle to flood basalt volcanism, Mahabaleshwar area, Deccan Traps. Philos Trans R Soc Lond 310:627–641

    Google Scholar 

  • Creixell C, Parada MÁ, Roperch P et al (2006) Syntectonic emplacement of the Middle Jurassic Concón Mafic Dike Swarm, Coastal Range, central Chile (33° S). Tectonophysics 425:101–122

    Google Scholar 

  • Cripps J, Widdowson M, Spicer R et al (2005) Coastal ecosystem responses to late stage Deccan Trap volcanism: the post K–T boundary (danian) palynofacies of Mumbai (Bombay), west India. Palaeogeol Palaeoclimatol Palaeoecol 216:303–332

    Google Scholar 

  • Datta Gupta S, Chatterjee R, Farooqui MY (2012) Formation evaluation of fractured basement, Cambay Basin, India. J Geophys Eng 9. http://iopscience.iop.org/1742-2140/9/2/162/pdf/1742-2140_9_2_162.pdf. Accessed on 10 Jan 2014

  • Davis GA, Lister GS (1988) Detachment faulting in continental extension; perspectives from the Southwestern U.S, Cordillera. Geol Soc Am Spec Pap 218:133–159

    Google Scholar 

  • Davis GH, Bump AP, García PE et al (1999) Conjugate Riedel deformation band shear zones. J Struct Geol 22:169–190

    Google Scholar 

  • Davis GH, Reynolds SJ, Kluth C (2012) Structural geology of rocks and regions, 3rd edn. Wiley, New York, pp 507, 508, 541

  • De A (1981) Late Mesozoic–lower Tertiary magma types of Kutch and Saurashtra. Mem Geol Soc India 3:327–339

    Google Scholar 

  • Delvaux D, Kervyn F, Macheyeki AS et al (2012) Geodynamic significance of the TRM segment in the East African Rift (W-Tanzania): active tectonics and paleostress in the Ufipa plateau and Rukwa basin. J Struct Geol 37:161–180

    Google Scholar 

  • Deshmukh SS, Sehgal MN (1988) Mafic dyke swarms in Deccan Volcanic Province of Madhya Pradesh and Maharashtra. Mem Geol Soc India 10:323–340

    Google Scholar 

  • Deshpande GG (1998) Geology of Maharashtra. Geol Soc India, Bangalore

  • Dessai A, Bertrand H (1995) The “Panvel flexure” along the western Indian continental margin: an extensional fault structure related to Deccan magmatism. Tectonophysics 241:165–178

    Google Scholar 

  • Dessai A, Bodas MS (1984) Occurrence of Nepheline Syenite around Murud–Janjira Raigarh District, Maharashtra, India. Curr Sci 53:775–777

    Google Scholar 

  • Dessai A, Viegas A (1995) Multi-generation mafic dyke swarm related to Deccan magmatism, south of Bombay: implications on the evolution of the western Indian continental margin. Mem Geol Soc India 47:435–451

    Google Scholar 

  • Destro N, Szatmari P, Alkmim FF et al (2003) Release faults, associated structures, and their control on petroleum trends in the Recôncavo Rift, northeast Brazil. Am Assoc Pet Geol Bul 87:1123–1144

    Google Scholar 

  • Devey CW, Lightfoot P (1986) Volcanological and tectonic control of stratigraphy and structure in the western Deccan Traps. Bull Volcanol 48:195–207

    Google Scholar 

  • Devey CW, Stephens W (1991) Tholeiitic dykes in the Seychelles and the original spatial extent of the Deccan. J Geol Soc Lond 148:979–983

    Google Scholar 

  • Devey CW, Stephens WE, (1992) Deccan related mag- matism west of the Seychelles-lndia rift. In: Al-abaster BC, Pankhurst RJ (eds) Magmatism and the causes of continental break-up, vol 68. Geological Society London, Special Publication, pp 271–291

  • Doblas M (1998) Slickenside kinematic indicators. Tectonophysics 295:187–197

    Google Scholar 

  • Doblas M, Faulkner D, Mahecha V et al (1997) Morphologically ductile criteria for the sense of movement on slickensides from an extensional detachment fault in southern Spain. J Struct Geol 19:1045–1054

    Google Scholar 

  • Dole G, Peshwa VV, Kale VS (2000) Evidence of a Paleoseismic event from Deccan Plateau Uplands. J Geol Soc India 56:547–555

    Google Scholar 

  • Dooley T, McClay K (1997) Analog modeling of pull-apart basins. AAPG Bull 81:1804–1826

    Google Scholar 

  • Duncan RA (1990) The volcanic record of the rèunion hotspot, In: Duncan RA, Backman J, Peterson LC et al (eds) Proc Ocean Drill Prog Sci Res 115, pp 3–10

  • Duncan RA, Storey M (1992) The life cycle of Indian Ocean hot spots. In: Duncan RA (ed) Synthesis of results from scientific drilling in the Indian Ocean. Am Geophys Univ Geophys Monogr 70, pp 91–103

  • Duraiswami RA, Das S, Shaikh TN (2012) Hydrogeological framework of Aquifers in the Deccan Traps, India: some insights. In: Pawar NJ, Das S, Duraiswami RA (eds) Hydrogeology of Deccan Traps and associated formations in Penninsular India. Geol Soc India, Bangalore

  • Dyment J (1998) Evolution of the Carlsberg Ridge between 60 and 45 Ma: ridge propagation, spreading asymmetry, and the Deccan–Rèunion hotspot. J Geophys Res Solid Earth 103:24067–24084

    Google Scholar 

  • Dzulynski S, Kotlarczyk J (1965) Tectogliphs on slickensided surfaces. Bull Pol Acad Sci 13:149–154

    Google Scholar 

  • Eig K, Bergh SG (2011) Late Cretaceous–Cenozoic fracturing in Lofoten, North Norway: tectonic significance, fracture mechanisms and controlling factors. Tectonophysics 499:190–205

    Google Scholar 

  • Etchecopar A, Vasseur G, Daignieres M (1981) An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. J Struct Geol 3:51–65

    Google Scholar 

  • Fossen H (2010) Structural geology. Cambridge University Press, Cambridge, pp 124, 135, 191, 198, 463

  • Fossen H, Tikoff B (1998) Extended models of transpression and transtension, and application to tectonic settings. In: Holdsworth RE, Strachan RA, Dewey JE (eds) Continental transpressional and transtensional tectonics. Geol Soc Lond Spec Publ 135, pp 15–33

  • Fowler CMR (2005) The solid earth: an introduction to global geophysics. Cambridge University Press, Cambridge, pp 567–577

  • Ganerød M (2010) Geochronology and paleomagnetism of Large Igneous Provinces, the North Atlantic Igneous Province and the Deccan Traps. PhD Thesis, Norwegian University of Science and Technology, Trondheim. http://www.geodynamics.no/people/morgan.html. Availed on 09 Jan 2014

  • Ganerød M, Torsvik T, van Hinsbergen D et al. (2011) Palaeoposition of the Seychelles microcontinent in relation to the Deccan traps and the plume generation zone in late Cretaceous–early Palaeogene time. In: van Hinsbergen DJJ, Buiter SJH, Torsvik TH et al (eds) The formation and evolution of Africa: a synopsis of 3.8 Ga of earth history. Geol Soc Lond Spec Publ 357, pp 229–252

  • Glazner A, Bartley J, Carl B (1999) Oblique opening and noncoaxial emplacement of the Jurassic independence dike swarm, California. J Struct Geol 21:1275–1283

    Google Scholar 

  • Godbole S, Rana R, Natu S (1996) Lava stratigraphy of Deccan basalts of western Maharashtra. Gondwana Geol Mag Spec Publ 2:125–134

    Google Scholar 

  • Gombos AM, Powell WG, Norton IO (1995) The tectonic evolution of western India and its impact on hydrocarbon occurrences—an overview. Sediment Geol 96:119–129

    Google Scholar 

  • Gopala Rao D (1990) Magnetic studies of basement off the coast of Bombay, west of India. Tectonophysics 175:317–334

    Google Scholar 

  • Gudmundsson A (1984) Formation of dykes, feeder-dykes, and the intrusion of dykes from magma chambers. Bull Volcanol 47:537–550

    Google Scholar 

  • Gudmundsson A (2011) Rock fractures in geological processes. Cambridge University Press, New York, pp 327–340

    Google Scholar 

  • Guha SK, Padale JG (1981) Seismicity and structure of the Deccan Trap region. In: Subbarao KV, Sukeshwala RN (eds) Deccan volcanism and related basalt provinces in other parts of the world. Geol Soc Ind Mem No. 3, Bangalore, pp 153–164

  • Guidi GD, Caputo R, Scudero S (2013) Regional and local stress field orientation inferred from quantitative analyses of extension joints: case study from southern Italy. Tectonics 32:239–251

    Google Scholar 

  • Gupta HK, Rao RUM, Srinivasa R et al (1999) Anatomy of surface rupture zones of two stable continental region earthquakes, 1967 Koyna and 1993 Latur, India. Geophys Res Lett 26:1985–1988

    Google Scholar 

  • Hancock P (1985) Brittle microtectonics: principles and practice. J Struct Geol 7:437–457

    Google Scholar 

  • Hargraves RB, Duncan RA (1990) Radiometric age and paleomagnetic results from Seychelles dikes. In: Duncan RA, Backman J, Peterson LC et al (eds) Proc ODP Sci Results 115. College Station, TX (Ocean Drilling Program), pp 119–122

  • Harinarayana T, Patro BPK, Veeraswamy K et al (2007) Regional geoelectric structure beneath Deccan Volcanic Province of the Indian subcontinent using magnetotellurics. Tectonophysics 445:66–80

    Google Scholar 

  • Herman GC (2009) Steeply-dipping extension fractures in the Newark basin, New Jersey. J Struct Geol 31:996–1011

    Google Scholar 

  • Hippolyte JC, Mann P (2011) Neogene–Quaternary tectonic evolution of the Leeward Antilles islands (Aruba, Bonaire, Curaçao) from fault kinematic analysis. Mar Pet Geol 28:259–277

    Google Scholar 

  • Hodgson RA (1961) Regional study of jointing in Comb Ridge-Navajo mountain area, Arizona and Utah. AAPG Bull 45:1–38

    Google Scholar 

  • Hofmann C, Féraud G, Courtillot V (2000) 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth Planet Sci Lett 180:13–27

    Google Scholar 

  • Hooper PR (1990) The timing of crustal extension and the eruption of continental flood basalts. Nature 345:246–249

    Google Scholar 

  • Hooper P, Widdowson M, Kelley S (2010) Tectonic setting and timing of the final Deccan flood basalt eruptions. Geology 38:839–842

    Google Scholar 

  • Hutton D (1992) Granite sheeted complexes: evidence for the dyking ascent mechanism. Trans R Soc Edinb Earth Sci 83:377–382

    Google Scholar 

  • Jade S (2004) Estimates of plate velocity and crustal deformation in the Indian subcontinent using GPS geodesy. Curr Sci 86:1443–1448

    Google Scholar 

  • Jain PK, Gupta DC (2013) Geochemistry of intrusive rocks of Deccan Trap region around Manmad, Nasik, India. Int J Adv Earth Environ Sci 1:1–13

    Google Scholar 

  • Jayaraman K (2007) India’s carbon dioxide trap. Nat Geosci 445:350

    Google Scholar 

  • Jones RMP (1980) Basinal isostatic adjustment faults and their petroleum significance. Bull Can Pet Geol 28:211–251

    Google Scholar 

  • Ju W, Hou G, Hari K (2013) Mechanics of mafic dyke swarms in the Deccan large igneous province: palaeostress field modelling. J Geodyn 66:79–91

    Google Scholar 

  • Kaila KL, Reddy PR, Dixit MM et al (1981) Deep crustal structure at Koyna, Maharashtra indicated by deep seismic profiling. J Geol Soc India 22:1–16

    Google Scholar 

  • Kailasam L (1975) Epeirogenic studies in India with reference to recent vertical movements. Tectonophysics 29:505–521

    Google Scholar 

  • Kailasam L (1979) Plateau uplift in peninsular India. Tectonophysics 61:243–269

    Google Scholar 

  • Kale VS, Peshwa VV (1995) The Bhima Basin. Geol Soc India, Bangalore, p 142

  • KaleVS Shejwalkar N (2008) Uplift along the western margin of the Deccan Basalt Province: is there any geomorphometric evidence? J Earth Syst Sci 117:959–971

    Google Scholar 

  • Kaplay RD, Vijay Kumar T, Sawant R (2013) Field evidence for deformation in Deccan Traps in microseismically active Nanded area, Maharashtra. Curr Sci 105:1051–1052

    Google Scholar 

  • Katz Y, Weinberger R, Aydin A (2004) Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah. J Struct Geol 26:491–501

    Google Scholar 

  • Kaven J, Maerten F, Pollard D (2011) Mechanical analysis of fault slip data: implications for paleostress analysis. J Struct Geol 33:78–91

    Google Scholar 

  • Keary P, Klepsis KA, Vine FJ (2009) Global tectonics, 3rd edn. Wiley, Sussex, p 482

    Google Scholar 

  • Klausen MB, Larsen HC (2002) East Greenland coast-parallel dike swarm and its role in continental breakup. In: Menzies MA, Klemperer SL, Ebinger CJ, Baker J (eds) Volcanic rifted margins. Geol Soc Am Spec Pap 362, pp 133–158

  • Knight KB, Renne PR, Halkett A et al (2003) 40Ar/39Ar dating of the Rajahmundry Traps, eastern India and their relationship to the Deccan traps. Earth Planet Sci Lett 208:85–99

    Google Scholar 

  • Kolla V, Coumes F (1990) Extension of structural and tectonic trends from the Indian subcontinent into the eastern Arabian Sea. Mar Pet Geol 7:188–196

    Google Scholar 

  • Koyi HA, Schmeling H, Burchardt S et al (2013) Shear zones between rock units with no relative movements. J Struct Geol 50:82–90

    Google Scholar 

  • Kranis H (2007) Neotectonic basin evolution in central-eastern mainland Greece: an overview. Bull Geol Soc Greece 40:360–373

    Google Scholar 

  • Kraus S, Poblete F, Arriagada C (2010) Dike systems and their volcanic host rocks on King George Island, Antarctica: implications on the geodynamic history based on a multidisciplinary approach. Tectonophysics 495:269–297

    Google Scholar 

  • Kumar P, Yuan X, Kumar MR et al (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897

    Google Scholar 

  • Kumar D, Thiagarajan S, Rai SN (2011) Deciphering geothermal resources in Deccan trap region using electrical resistivity tomography technique. J Geol Soc India 78:541–548

    Google Scholar 

  • Kundu B, Matam A (2000) Identification of probable faults in the vicinity of Harnai–Ratnagiri region of the Konkan coast, Maharashtra, India. Curr Sci 78:1556–1560

    Google Scholar 

  • Lacombe O (2012) Do fault slip data inversions actually yield “paleostresses” that can be compared with contemporary stresses? A critical discussion. C R Geosci 344:159–173

    Google Scholar 

  • Lescinsky DT, Fink JH (2000) Lava and ice interaction at stratovolcanoes: use of characteristic features to determine past glacial extents and future volcanic hazards. J Geophys Res Solid Earth 105:23711–23726

    Google Scholar 

  • Liesa CL, Lisle RJ (2004) Reliability of methods to separate stress tensors from heterogeneous fault–slip data. J Struct Geol 26:559–572

    Google Scholar 

  • Lightfoot PC, Hawkesworth CJ, Sethna SF (1987) Petrogenesis of rhyolites and trachytes from the Deccan Traps: Sr, Nd and Pb isotope and trace element evidence. Contrib Mineral Petrol 95:44–54

    Google Scholar 

  • Lisle RJ (1989) Paleostress analysis from sheared dike sets. Geol Soc Am Bull 101:968–972

    Google Scholar 

  • Luther AL, Axen GJ, Selverstone J et al (2009) Is low angle normal fault slip by local stress rotations? Assessment of paleostress inversion methods. AGU, Fall Meeting-Abstract. http://adsabs.harvard.edu/abs/2009AGUFM.T41A1993L. Accessed on 30 Nov 2011

  • Mahadevan TM (1994) Deep continental structure of India. Geol Soc Ind Mem 28, Bangalore, pp 237–296, 474–476

  • Mahoney JJ (1988) Deccan traps. In: MacDougall JD (ed) Continental flood basalts. Kluwer, Dordrecht, pp 151–194

    Google Scholar 

  • Mahoney JJ, Duncan RA, Khan W et al (2002) Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Rèunion hotspot and Deccan Traps. Earth Planet Sci Lett 203:295–310

    Google Scholar 

  • Malavieille J (1987) Kinematics of compressional and extensional ductile shearing deformation in a metamorphic core of the northern Basin and Range. J Struct Geol 9:541–554

    Google Scholar 

  • Maldonaldo A, Stanley DJ (1976) Late Quaternary sedimentation and stratigraphy in the strait of Sicily. Smithson Contrib Earth Sci 16. http://www.sil.si.edu/smithsoniancontributions/EarthSciences/pdf_hi/sces-0016.pdf. Accessed on 04 Aug 2013

  • Malod J, Droz L, Kemal BM et al (1997) Early spreading and continental to oceanic basement transition beneath the Indus deep-sea fan: northeastern Arabian Sea. Mar Geol 141:221–235

    Google Scholar 

  • Marquer D, Challandes N, Baudin T (1996) Shear zone patterns and strain partitioning at the scale of a Penninic nappe: the Suretta nappe (Eastern Swiss Alps). J Struct Geol 18:753–764

    Google Scholar 

  • Menegon L, Pennacchioni G (2010) Local shear zone pattern and bulk deformation in the Gran Paradiso metagranite (NW Italian Alps). Int J Earth Sci 99:1805–1825

    Google Scholar 

  • Menzies MA, Klemperer SL, Ebinger CJ et al (2002) Characteristics of volcanic rifted margins. In: Menzies MA, Klemperer SL, Ebinger CJ et al. (eds) Volcanic rifted margins. Geol Soc Am Spec Pap 362, pp 1–14

  • Miggins DP, Thompson RA, Pillmore CL et al (2002) Extension and uplift of the northern Rio Grande Rift: evidence from 40Ar/39Ar geochronology from the Sangre de Cristo Mountains, south-central Colorado and northern New Mexico. In: Menzies MA, Klemperer SL, Ebinger CJ, et al (eds) Volcanic rifted margins. Geol Soc Am Spec Pap 362, pp 47–64

  • Miles PR, Munschy M, Segoufin J (1998) Structure and early evolution of the Arabian Sea and East Somali Basin. Geophys J Int 134:876–888

    Google Scholar 

  • Mishra DC (2012a) Gravity and magnetic methods in geological studies: principles, integrated exploration and plate tectonics. B.S. Publications, Hyderabad

    Google Scholar 

  • Mishra OP (2012) Seismological research in India. In: Banerjee DM, Singhvi AK (eds) Glimpses of geoscience research in India. Indian report to the IUGS: 2008–2012. Proc Ind Nat Sci Acad 78, pp 361–371

  • Mishra DC, Tiwari VM, Singh B (2008) Gravity studies in India and their Geological Significance. In: Subbarao KV, Sukeshwala RN (eds) Deccan volcanism and related basalt provinces in other parts of the world. Geol Soc Ind Mem No. 3, Bangalore, pp 329–372

  • Misra AA (2014) Photograph of the month. J Struct Geol 60:105

    Google Scholar 

  • Misra AA, Bhattacharya G (2014) Rare slickenside kinematic indicator “Asymmetric Elevations” seen abundant in southern Aksa Beach, Mumbai, India. Int J Earth Sci 103:327–328

    Google Scholar 

  • Misra AA, Mukherjee S (2013) Role of tectonic inheritance in passive margin architecture: a review. Symposium in Honour of Davis Robert. Basin Dynamics and Petroleum Systems: Geophysics, Structure, Stratigraphy, Sedimentology and Geochemistry. 14–16 April 2014. Windsor Building, Royal Holloway University of London (submitted abstract)

  • Misra AA, Sinha N, Mukherjee S (2013) Repeat ridge jumps and microcontinent separation: insights from NE Arabian Sea. Mar Pet Geol (submitted)

  • Mitchell C, Widdowson M (1991) A geological map of the southern Deccan Traps, India and its structural implications. J Geol Soc Lond 148:495–505

    Google Scholar 

  • Mohan G, Kumar MR (2004) Seismological constraints on the structure and composition of western Deccan volcanic province from converted phases. Geophys Res Lett 31:L02601

    Google Scholar 

  • Mohan G, Surve G, Tiwari PK (2007) Seismic evidences of faulting beneath the Panvel flexure. Curr Sci 93:991–996

    Google Scholar 

  • Morgan WJ (1972) Deep mantle convection plumes and plate motions. AAPG Bull 56:203–213

    Google Scholar 

  • Morley CK, Haranya C, Phoosongsee W et al (2004) Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand. J Struct Geol 26:1083–1829

    Google Scholar 

  • Mukherjee S (2007) Geodynamics, deformation and mathematical analysis of metamorphic belts of the NW Himalaya. Unpublished Ph.D. thesis. Indian Institute of Technology Roorkee, pp 1–267

  • Mukherjee S (2010a) Structures at meso and micro-scales in the Sutlej section of the Higher Himalayan shear zone in Himalaya. e-Terra 1–27

  • Mukherjee S (2010b) Microstructures of the Zanskar Shear Zone. Earth Sci India 3:9–27

    Google Scholar 

  • Mukherjee S (2011) Mineral fish: their morphological classification, usefulness as shear sense indicators and genesis. Int J Earth Sci 100:1303–1314

    Google Scholar 

  • Mukherjee S (2012a) Tectonic Implications and Morphology of Trapezoidal Mica Grains from the Sutlej Section of the Higher Himalayan Shear Zone, Indian Himalaya. J Geol 120:575–590

    Google Scholar 

  • Mukherjee S (2012b) A micro-duplex. Int J Earth Sci 101:503

    Google Scholar 

  • Mukherjee S (2012c) Simple shear is not so simple! Kinematics and shear senses in Newtonian viscous simple shear zones. Geol Mag 149:819–826

    Google Scholar 

  • Mukherjee S (2013a) Review of flanking structures in meso- and micro-scales. Geol Mag (in press). doi:10.1017/S0016756813001088

  • Mukherjee S (2013b) Atlas of shear zone structures in meso-scale. Springer, Cham. ISBN 978-3-319-00088-6

    Google Scholar 

  • Mukherjee S (2013c) Higher Himalaya in the Bhagirathi section (NW Himalaya, India): its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms. Int J Earth Sci 102:1851–1870

    Google Scholar 

  • Mukherjee S (2013d) Deformation microstructures in rocks. Springer. ISBN: 978-3-642-25607-3

  • Mukherjee S, Koyi HA (2010a) Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci 99:1267–1303

    Google Scholar 

  • Mukherjee S, Koyi HA (2010b) Higher Himalayan Shear Zone, Zanskar Indian Himalaya—microstructural studies & extrusion mechanism by a combination of simple shear & channel flow. Int J Earth Sci 99:1083–1110

    Google Scholar 

  • Mukhopadhyay R, Fernandes WA, Naik YS et al (2010) An insight into the “Fifty-Fathom-Flat” off India’s west coast. Geomorphology 118:465–470

    Google Scholar 

  • Müller RD, Gaina C, Roest WR et al (2001) A recipe for microcontinent formation. Geology 29:203–206

    Google Scholar 

  • Naik G, Gandhi D, Singh A et al (2006) Paleocene-to-early Eocene tectono-stratigraphic evolution and paleogeographic reconstruction of Heera-Panna-Bassein, Bombay offshore basin. Lead Edge 25:1071–1077

    Google Scholar 

  • Nemčok M, Lisle RJ (1995) A stress inversion procedure for polyphase fault/slip data sets. J Struct Geol 17:1445–1453

    Google Scholar 

  • Nickelsen RP (2009) Overprinted strike-slip deformation in the southern Valley and Ridge in Pennsylvania. J Struct Geol 31:865–873

    Google Scholar 

  • Owen-Smith TM, Ashwal LD, Torsvik TH et al (2013) Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism. Lithos 182:33–47

    Google Scholar 

  • Park S, Kim Y, Ryoo C et al (2010) Fractal analysis of the evolution of a fracture network in a granite outcrop, SE Korea. Geosci J 14:201–215

    Google Scholar 

  • Parthasarathy A, Panchpakeshan V, Nagarajan R (2013) Engineering geology. Wiley, New York, pp 382–392

    Google Scholar 

  • Passchier CW, Trouw RA (2005) Microtectonics, 2nd edn. Springer, Berlin, pp 157–158

    Google Scholar 

  • Pawar NJ, Das S, Duraiswami RS (2012) Hydrogeology of Deccan Traps and Associated Formations in Peninsular India. Edited volume. Geol Soc Ind Mem 80

  • Peng ZX, Mahoney JJ (1995) Drillhole lavas from the northwestern Deccan Traps, and the evolution of Rèunion hot spot mantle. Earth Planet Sci Lett 134:169–185

    Google Scholar 

  • Peng ZX, Mahoney JJ, Vanderkluysen L et al (2014) Sr, Nd and Pb isotopic and chemical compositions of central Deccan Traps lavas and relation to southwestern Deccan stratigraphy. J Asian Earth Sci 84:83–94

    Google Scholar 

  • Péron-Pinvidic G, Manatschal G (2010) From microcontinents to extensional allochthons: witnesses of how continents rift and break apart? Pet Geosci 16:189–197

    Google Scholar 

  • Peshwa VV, Kale VS (1988) Role of remote sensing in the detection of potential sites for landslides/rockfalls in the Deccan Trap lava terrain of western India. Environmental Geotechnics and Problematic Soils and Rocks, Balkema, Rotterdam, pp 367–374

  • Peshwa VV, Kale VS (1997) Neotectonics of the Deccan Traps Province: focus on the Kurduwadi Lineament. J Geophys 1:77–86

    Google Scholar 

  • Peshwa VV, Mulay JG, Kale VS (1987) Fracture zones in the Deccan Traps of Western and Central India: a study based on remote sensing techniques. J Indian Soc Remote Sensing 15:9–17

    Google Scholar 

  • Petit J (1987) Criteria for the sense of movement on fault surfaces in brittle rocks. J Struct Geol 9:597–608

    Google Scholar 

  • Plummer PS, Belle E (1995) Mesozoic tectono-stratigraphic evolution of the Seychelles microcontinent. Sediment Geol 96:73–91

    Google Scholar 

  • Plummer PS, Joseph PR, Samson PJ (1998) Depositional environments and oil potential of Jurassic/Cretaceous source rocks within the Seychelles microcontinent. Mar Pet Geol 15:385–401

    Google Scholar 

  • Pollyea RM, Fairley JP, Podgorney RK (2014) Physical constraints on geologic CO2 sequestration in low-volume basalt formations. GSA Bull 126:344–351

    Google Scholar 

  • Powar KB (1981) Lineament fabric and dyke pattern in the western part of the Deccan volcanic province. In: Subbarao KV, Sukeshwala RN (eds) Deccan Volcanism and Related Basalt Provinces in other parts of the world. Geol Soc Ind Mem No. 3. Bangalore. pp. 45-57.

  • Prasanna Lakshmi KJ, Senthil Kumar P, Vijayakumar K et al (2014) Petrophysical properties of the Deccan basalts exposed in the Western Ghats escarpment around Mahabaleshwar and Koyna, India. J Asian Earth Sci 84:176–187

    Google Scholar 

  • Qureshy MN (1981) Gravity anomalies, isostasy and crust mantle relations in the Deccan trap and contiguous regions, India. In: Subbarao KV, Sukeshwala RN (eds) Deccan volcanism and related basalt provinces in other parts of the world. Geol Soc Ind Mem No. 3, Bangalore, pp 184–197

  • Rai SS, Ramesh DS (2012) Seismic imaging of the Indian continental lithosphere. In: Banerjee DM, Singhvi AK (eds) Glimpses of geoscience research in India. Indian report to the IUGS: 2008–2012. Proc Indian Natl Sci Acad 78, pp 353–359

  • Rai SN, Thiagarajan S, Kumari YR (2011) Exploration for groundwater in the basaltic Deccan traps terrain in Katol Taluk, Nagpur District, India. Curr Sci 1198–1205

  • Ramsay JG, Huber MI (1987) The techniques of modern structural geology, vol 2: folds and fractures. Academic Press, London, pp 529–530

  • Ranalli G, Yin ZM (1990) Critical stress difference and orientation of faults in rocks with strength anisotropies: the two-dimensional case. J Struct Geol 12:1067–1071

    Google Scholar 

  • Rao NP, Roy S, Arora K (2013) Deep Scientific Drilling in Koyna, India—Brain-storming workshop on geological investigations 19–20, March 2013. J Geol Soc India 81:722–723

    Google Scholar 

  • Ray R, Sheth HC, Mallik J (2007) Structure and emplacement of the Nandurbar–Dhule mafic dyke swarm, Deccan Traps, and the tectonomagmatic evolution of flood basalts. Bull Volcanol 69:537–551

    Google Scholar 

  • Ray R, Shukla AD, Sheth HC et al (2008) Highly heterogeneous Precambrian basement under the central Deccan Traps, India: direct evidence from xenoliths in dykes. Gondwana Res 13:375–385

    Google Scholar 

  • Ray D, Misra M, Widdowson M et al (2014) A common percentage for Deccan Continental Flood Basalt and Central Indian Ocean Ridge Basalt? A Geochemical and isotopic approach. J Asian Earth Sci 84:188–200

    Google Scholar 

  • Reddy CD, El-fiky G, Kato T, et al (2000) Crustal strain field in the Deccan trap region, western India, derived from GPS measurements. Earth Planets Sp 52:965–969

    Google Scholar 

  • Reeves CV (2013a) The global tectonics of the Indian Ocean and its relevance to India’s western margin. J Geophys 34:87–94

    Google Scholar 

  • Reeves CV (2013b) The position of Madagascar within Gondwana and its movements during Gondwana dispersal. J Afr Earth Sci. doi:10.1016/j.jafrearsci.2013.07.011

  • Reynolds SJ, Lister GS (1990) Folding of mylonitic zones in Cordilleran core complexes: evidence from near the mylonitic front. Geology 18:216–219

    Google Scholar 

  • Richards MA, Duncan RA, Courtillot VE (1989) Flood basalts and hotspot tracks: plume heads and tails. Science 246:103–107

    Google Scholar 

  • Rowe CD, Kirkpatrick JD, Brodsky EE (2012) Fault rock injections record paleo-earthquakes. Earth Planet Lett 335–336:154–166

    Google Scholar 

  • Roy AB (2012) Indian Shield: insight into the pristine size, shape and tectonic framework. Indian J Geosci 66:181–192

    Google Scholar 

  • Roy S, Rao NP, Akkiraju VV et al (2013) Granitic basement below Deccan Traps Unearthed by drilling in the Koyna seismic zone, Western India. J Geol Soc India 81:289–290

    Google Scholar 

  • Roychoudhury SC, Deshpande SV (1982) Regional distribution of carbonate facies, Bombay offshore region, India. Am Assoc Pet Geol Bull 66:1483–1496

    Google Scholar 

  • Sabale PD, Meshram SA (2012) Effect of dyke structure on ground water in between Sangamner and Sinnar area: a case study of Bhokani Dyke. Int J Comput Eng Res 2:1130–1136

    Google Scholar 

  • Sahu R, Kumar A, Subbarao KV et al (2003) Rb–Sr age and Sr Isotopic composition of alkaline dykes near Mumbai: further evidence for the Deccan Trap-Réunion plume connection. J Geol Soc India 62:641–646

    Google Scholar 

  • Sandwell DT,  Smith, WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate. J Geophys Res Solid Earth 114: B01411

    Google Scholar 

  • Sarma SVS, Patro BPK, Harinarayana T et al (2004) A magnetotelluric (MT) study across the Koyna seismic zone, Western India: evidence for block structure. Phys Earth Planet Inter 142:23–36

    Google Scholar 

  • Saunders AD, Jones SM, Morgan LA et al (2007) Regional uplift associated with continental large igneous provinces: the roles of mantle plumes and the lithosphere. Chem Geol 241:282–318

    Google Scholar 

  • Schaefer CJ, Kattenhorn SA (2004) Characterization and evolution of fractures in low volume pahoehoe lava flows, eastern Snake River Plain, Idaho. Geol Soc Am Bull 116:322–336

    Google Scholar 

  • Schöbel S, de Wall H, Ganerød M et al (2014) Magnetostratigraphy and 40Ar-39Ar geochronology of the Malwa Plateau region (Northern Deccan Traps), central western India: Significance and correlation with the main Deccan Large Igneous Province sequences. J Asian Earth Sci (in press). http://dx.doi.org/10.1016/j.jseaes.2014.03.022

  • Sen S (2011) Petrography and structural deformation of deccan basalt in and around Powai, India. Unpublished M.Sc. thesis, Indian Institute of Technology Bombay, India

  • Sen G, Bizimis M, Das R et al (2009) Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth Planet Sci Lett 277:101–111

    Google Scholar 

  • Seton M, Müller R, Zahirovic S et al (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev 113:212–270

    Google Scholar 

  • Shah J, Srivastava DC, Pandian M et al (2007) Mesoscale fractures as palaeostress indicators: a case study from Cauvery Basin. J Geol Soc India 70:571–584

    Google Scholar 

  • Sheth H (1998) A reappraisal of the coastal Panvel flexure, Deccan Traps, as a listric-fault controlled reverse drag structure. Tectonophysics 294:143–149

    Google Scholar 

  • Sheth HC (2000) The timing of crustal extension, diking, and eruption of the Deccan flood basalts. Int Geol Rev 42:1007–1016

    Google Scholar 

  • Sheth HC (2005) From Deccan to Réunion: No trace of a mantle plume. In: Foulger GR, Natland JH, Presnall DC et al (eds) Plates, plumes and paradigms. Spec Pap Geol Soc Am 388, pp 477–501

  • Sheth HC (2007) Plume-related regional prevolcanic uplift in the Deccan traps: absence of evidence, evidence of absence. Geol Soc Am Spec Pap 430:785–813

    Google Scholar 

  • Sheth HC, Pande K (2014) Geological and 40Ar/39Ar age constraints on late-stage Deccan rhyolitic volcanism, inter-volcanic sedimentation, and the Panvel flexure from the Dongri area, Mumbai. J Asian Earth Sci 84:167–175

    Google Scholar 

  • Sheth HC, Pande K, Bhutani R (2001a) 40Ar- 39Ar ages of Bombay trachytes: evidence for a Palaeocene phase of Deccan volcanism. Geophys Res Lett 28:3513–3516

    Google Scholar 

  • Sheth HC, Pande K, Bhutani R (2001b) 40Ar/39Ar age of a national geological monument: the Gilbert Hill basalt, Deccan Traps, Bombay. Curr Sci 80:1437–1440

    Google Scholar 

  • Simpson C, Schmid SM (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. Geol Soc Am Bull 94:1281–1288

    Google Scholar 

  • Sippel J (2009) The Paleostress History of the Central European Basin System. Ph. D. thesis. Scientific Technical Report STR09/06, Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fachbereich Geowissenschaften an der Freien Universität Berlin

  • Sippel J, Saintot A, Heeremans M et al (2010) Paleostress field reconstruction in the Oslo region. Mar Pet Geol 27:682–708

    Google Scholar 

  • Smith MR, Crespi JM, Steinen RP (2012) Paleostress analysis of post-alleghanian brittle faults from an exposure in the Putnam-Nashoba Terrane, eastern Connecticut. Paper no. 40-10, Northeastern Section—47 Annual Meeting abstracts. https://gsa.confex.com/gsa/2012NE/finalprogram/abstract_200128.htm. Accessed on 30 Nov 2013

  • Spencer JE (1984) Role of tectonic denudation in warping and uplift of low-angle normal faults. Geology 12:95–98

    Google Scholar 

  • Srivastava DC, Lisle RJ, Vandycke S (1995) Shear zones as a new type of palaeostress indicator. J Struct Geol 17:663–676

    Google Scholar 

  • Stünitz H, Keulen N, Hirose T et al (2010) Grain size distribution and microstructures of experimentally sheared granitoid gouge at coseismic slip rates—criteria to distinguish seismic and aseismic faults? J Struct Geol 32:59–69

    Google Scholar 

  • Subrahmanya KR (2001) Arabian Sea—the prime witness to the Drama of India–Madagascar–Seychelles separation. Gondwana Res 4:792–793

    Google Scholar 

  • Subrahmanyam C, Chand S (2006) Evolution of the passive continental margins of India—a geophysical appraisal. Gondwana Res 10:167–178

    Google Scholar 

  • Talwani M, Reif C (1998) Laxmi Ridge—a continental sliver in the Arabian Sea. Mar Geophys Res 20:259–271

    Google Scholar 

  • Tewari HC (2008) Deep seismic imaging of Indian continental crust and lithosphere. In: Subbarao KV, Sukeshwala RN (eds) Deccan volcanism and related basalt provinces in other parts of the world. Geol Soc Ind Mem No. 3, Bangalore, pp 153–164

  • Tija HD (1964) Slickenslides and Fault Movements. Geol Soc Am Bull 75:683-686

  • Tjia HD (1967) Sense of fault displacements. Geol Mijnb 46:392–396

    Google Scholar 

  • Todal A, Edholm O (1998) Continental margin off western India and Deccan large igneous province. Mar Geophys Res 20:273–291

    Google Scholar 

  • Twiss RJ, Unruh JR (1998) Analysis of fault slip inversions: do they constrain stress or strain rate? J Geophys Res Solid Earth 103:2205–12222

    Google Scholar 

  • Vaidhyanadhan R, Ramakrishnan M (2008) Geology of India, vol 2. Geological Society of India, Bangalore, pp 733–784

  • Valdiya KS (2010) The making of India: geodynamic evolution. Macmillan, New Delhi, p 816

    Google Scholar 

  • Valdiya KS (2011) Some burning questions remaining unanswered. J Geol Soc India 78:299–320

    Google Scholar 

  • van Gent H, Back S, Urai JL et al (2010) Small-scale faulting in the upper Cretaceous of the Groningen block (The Netherlands): 3D seismic interpretation, fault plane analysis and regional paleostress. J Struct Geol 32:537–553

    Google Scholar 

  • van Hinsbergen DJ, Steinberger B, Doubrovine PV et al (2011) Acceleration and deceleration of India–Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J Geophys Res Solid Earth 116:B6

    Google Scholar 

  • Vandamme D, Courtillot V, Besse J et al (1991) Paleomagnetism and age determinations of the Deccan traps (India): results of a Nagpur–Bombay traverse and review of earlier work. Rev Geophys 29:159–190

    Google Scholar 

  • Vanderkluysen L, Mahoney J, Hooper P (2004) Implications for the emplacement of the Deccan Traps (India) from isotopic and elemental signatures of dikes. AGU Fall Meeting Abstracts. http://adsabs.harvard.edu/abs/2004AGUFM.V51B0561V. Accessed on 23 Aug 2013

  • Vanderkluysen L, Mahoney JJ, Hooper PR et al (2011) The feeder system of the Deccan Traps (India): insights from dike geochemistry. J Petrol 52:315–343

    Google Scholar 

  • Varun TR, Sainath BK, Ishwar NB (2009) Evaluating hydrocarbon potential of Deccan Trap (Basaltic Reservoirs) in padra field of Cambay Basin for its effective development through logging, geological and geophysical techniques. In: 2nd SPWLA-India symposium, November

  • Verma NK, Kutty PSN, Sen G (2001) Imprints of strike slip movements in the Eocene–Miocene sequence of Western India Continental Shelf: implications for hydrocarbon exploration and production strategy. Geohorizons July issue:5–10

  • Viola G, Kounov A, Andreoli MAG et al (2012) Brittle tectonic evolution along the western margin of South Africa: more than 500 Myr of continued reactivation. Tectonophysics 514–517:93–114

    Google Scholar 

  • Waldron JWF, Roselli C, Johnston SK (2007) Transpressional structures on a Late Palaeozoic intracontinental transform fault, Canadian Appalachians. In: Cunningham WD, Mann P (eds) Tectonics of strike-slip restraining and releasing bends. Geol Soc Lond Spec Publ 290, pp 367–385

  • Wallace RE (1951) Geometry of shearing stress and relation to faulting. J Geol 59:118–130

    Google Scholar 

  • Watkeys MK (2002) Development of the Lebombo rifted volcanic margin of southeast Africa. In: Menzies MA, Klemperer SL, Ebinger, CJ et al (eds) Volcanic rifted margins. Geol Soc Am Spec Pap 362, pp 27–46

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, New York, p 458

    Google Scholar 

  • Watts A, Cox K (1989) The Deccan Traps: an interpretation in terms of progressive lithospheric flexure in response to a migrating load. Earth Planet Sci Lett 93:85–97

    Google Scholar 

  • White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res Solid Earth 94:7685–7729

    Google Scholar 

  • White RS, McKenzie DP (1995) Mantle plumes and flood basalts. J Geophys Res Solid Earth 100:17543–17586

    Google Scholar 

  • Whiteside P (1986) Discussion on ‘Large-scale toppling within a sackung type deformation at Ben Attow, Scotland’ by G. Holmes, JJ Jarvis. Q J Eng Geol Hydrogeol 19:439

    Google Scholar 

  • Widdowson M (1997) Tertiary palaeosurfaces of the SW Deccan, Western India: implications for passive margin uplift. In: Widdowson M (ed) Palaeosurfaces: recognition, reconstruction and palaeoenvironmental interpretation. Geol Soc Spec Publ 120, pp 221–248

  • Widdowson M, Cox KG (1999) Uplift and erosional history of the Deccan Traps, India: evidence from laterites and drainage patterns of the Western Ghats and Konkan Coast. Earth Planet Sci Lett 137:57–69

    Google Scholar 

  • Widdowson M, Pringle M, Fernandez O (2000) A post K–T boundary (Early Palaeocene) age for Deccan-type feeder dykes, Goa, India. J Petrol 41:1177–1194

    Google Scholar 

  • Xu S-S, Nieto-Samaniego A, Alaniz-Álvarez S (2012) Emplacement of pyroclastic dykes in Riedel shear fractures: an example from the Sierra de San Miguelito, central Mexico. J Volcanol Geotherm Res 250:1–8

    Google Scholar 

  • Yamaji A (2000) The multiple inverse method: a new technique to separate stresses from heterogeneous fault–slip data. J Struct Geol 22:441–452

    Google Scholar 

  • Yamaji A, Otsubo M, Sato K (2006) Paleostress analysis using the Hough transform for separating stresses from heterogeneous fault–slip data. J Struct Geol 28:980–990

    Google Scholar 

  • Yatheesh V, Bhattacharya G, Dyment J (2009) Early oceanic opening off western India–Pakistan margin: the Gop basin revisited. Earth Planet Sci Lett 284:399–408

    Google Scholar 

  • Zachariáš J, Hübst Z (2012) Structural evolution of the Roudný gold deposit, Bohemian Massif: a combination of paleostress analysis and review of historical documents. J Geosci 57:87–103

    Google Scholar 

  • Žalohar J (2009) T-TECTO 3.0 Professional. Integrated software for structural analysis of fault-slip data. Department of Geology, SI-1000 Ljubljana, Slovenia. http://www2.arnes.si/~jzaloh/t-tecto_homepage.htm. Accessed on 23 Aug 2013

  • Žalohar J, Vrabec M (2007) Paleostress analysis of heterogeneous fault-slip data: the Gauss method. J Struct Geol 29:1798–1810

    Google Scholar 

Download references

Acknowledgments

This study is a part of AAM’s doctoral thesis funded by IIT Bombay. A part of the work also comes from GB’s M.Sc. thesis. Sourav Sarkar, Rajkumar Ghosh, Rakesh Yadav, Rahul Biswas and Kartick Dey assisted many fieldworks. Session conveners Francesco Storti and Susanne Buiter allowed SM to present this research at the EGU, Vienna 2013. Jure Žalohar provided the license for his software T-TECTO 3.0 Professional and conversed patiently on all the programme-related queries. Discussions with Deepak Chandra Srivastava, Michal Nemčok, Saibal Gupta, Amit Kumar Sen, Nishikanta Kundu, Roberto Weinberg, Loyc Vanderkluysen, Nilanjan Chatterjee, Mainak Choudhuri, Sudipta Tapan Sinha, GN Jadhav, Tuhin Biswas, Dripta Dutta, Sidhartha Bhattacharyya and Haakon Fossen were fruitful. Anindya Ghosh’s comments on remote sensing were beneficial. Comments by George Mathew and especially Hetu Sheth clarified the text. This work improved immensely by three rounds very detailed external reviews by Alexandre Kounov, Colin Reeves, Morgan Ganerød, and Nicolas Bellahsen. We are also grateful to Global Land Cover Facility (GLCF—a University of Maryland and NASA consortium) for providing the ETM + satellite data (http://glcf.umd.edu/). Thanks to Pundarika Rao for preparing the ETM + FCC images in Figs. 12 & 13. Editorial handling: Claudio Rosenberg, Wolf-Christian Dullo, Monika Dullo, Nithiya Sivaraman and Springer Correction Team (Chennai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Mukherjee.

Electronic supplementary material

Appendices

Appendix 1

The Coulomb–Navier’s fracture theory states that for an isotropic rock, the fault geometry is controlled by (1) magnitudes and orientations of the principal stresses, and (2) internal friction of the rock, as per:

$$\alpha = \pm ( 4 5^\circ - \varphi / 2)$$
(1)

where α: angle between the fracture and the maximum principal compressive stress axis; φ: angle of internal friction of the rock. Thus, σ 1 makes 30° angle with the fault for a rock with φ = 30° and σ 3 60° for the same rock. For isotropic rocks, φ ranges 25–35°. We used this simple fracture criterion to indicate the possible σ 3 axis on the satellite images. As commonly documented in field, vertical Y- and P-planes and horizontal slip were considered.

Appendix 2

See Žalohar and Vrabec (2007) for details.

  1. I.

    s: Dispersion parameter for the distribution of the angular misfits between the predicted and the actual direction of movement along the faults.

  2. II.

    Δ: Threshold for the value of the compatibility measure for a fault-slip datum to be compatible with a given stress/strain.

  3. III.

    q 1: Approximate angle of internal friction for an intact rock. It is the slope of the tangent of the largest Mohr circle on the Mohr diagram.

  4. IV.

    q 2: For a preexisting fault, it is the angle of residual friction for sliding. The parameters q 1 and q 2 constrain the possible values of the ratio between the normal and shear stress on the faults so that mechanically acceptable solutions of the inverse problem are calculated.

  5. V.

    Misfit angle: Angle between the predicted and the actual direction of slip on a fault plane. Determined by misfit functions. These functions differ with users. Žalohar and Vrabec (2007) used a Gaussian distribution function to estimate the misfit angle. Célérier et al. (2012) detailed misfit criteria and functions of previous authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A.A., Bhattacharya, G., Mukherjee, S. et al. Near N–S paleo-extension in the western Deccan region, India: Does it link strike-slip tectonics with India–Seychelles rifting?. Int J Earth Sci (Geol Rundsch) 103, 1645–1680 (2014). https://doi.org/10.1007/s00531-014-1021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1021-x

Keywords

Navigation