Skip to main content
Log in

Review on symmetric structures in ductile shear zones

  • Review Article
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Symmetric structures in ductile shear zones range widely in shapes and geneses. Matrix rheology, its flow pattern, its competency contrast with the clast, degree of slip of the clast, shear intensity and its variation across shear zone and deformation temperature, and degree of confinement of clast in shear zones affects (independently) the degree of symmetry of objects. Kinematic vorticity number is one of the parameters that govern tail geometry across clasts. For example, symmetric and nearly straight tails develop if the clast–matrix system underwent dominantly a pure shear/compression. Prolonged deformation and concomitant recrystallization can significantly change the degree of symmetry of clasts. Angular relation between two shear zones or between a shear zone and anisotropy determines fundamentally the degree of symmetry of lozenges. Symmetry of boudinaged clasts too depends on competency contrast between the matrix and clast in some cases, and on the degrees of slip of inter-boudin surfaces and pure shear. Parasitic folds and post-tectonic veins are usually symmetric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abe S, Urai JL (2012) Discrete element modeling of boudinage: insights on rock rheology, matrix flow, and evolution of geometry. J Geophys Res. doi:10.1029/2011JB008555

    Google Scholar 

  • Arslan A, Passchier CW, Koehn D (2008) Foliation boudinage. J Struct Geol 30:291–309

    Article  Google Scholar 

  • Augustithis SS (1979) Atlas of the textural patterns of basic and ultrabasic rocks and their genetic significance. Walter de Gruyter, Berlin, pp 17–107

    Book  Google Scholar 

  • Awdal A, Healy D, Alsop GI (2014) Geometrical analysis of deformation band lozenges and their scaling relationships to fault lenses. J Struct Geol 66:11–23

    Article  Google Scholar 

  • Barbour GP (1930) Origin of the Bedford augen-gneiss. Am J Sci 219:351–358

    Article  Google Scholar 

  • Bard JP (1986) Microtextures of igneous and metamorphic rocks. Reidel, Dordrecht, p 87

    Book  Google Scholar 

  • Barker AJ (1998) Introduction to metamorphic textures and microstructures, 2nd edn. Stanley Thornes (Publishers) Ltd., Cheltenham

    Book  Google Scholar 

  • Bellot J-P, Bronner G, Laverne C (2002) Transcurrent strain partitioning along a suture zone in the Maures massif (France): result of an eastern indenter tectonics in European Variscides? In: Martı́nez Catalán JR, Hatcher RD, Arenas R Jr, Dı́az Garcıa F (eds) Variscan–Appalachian dynamics: the building of the late Paleozoic basement, vol 364. Geol Soc Am Spec Pap, Boudler, pp 223–237

  • Bjornerud M (1989) Toward a unified conceptual framework for shear sense indicators. J Struct Geol 11:1045–1049

    Article  Google Scholar 

  • Bons PD, Barr TD, ten Brink CE (1997) The development of d-clasts in non-linear viscous materials: a numerical approach. Tectonophysics 270:29–41

    Article  Google Scholar 

  • Bons PD, Druguet E, Hamann I, Carreras J, Passchier CW (2004) Apparent boudinage in dykes. J Struct Geol 26:625–636

    Article  Google Scholar 

  • Bons PD, Druguet E, Castano L-M, Elburg MA (2008) Finding what is now not there anymore: recognizing missing fluid and magma volumes. Geology 36:851–854

    Article  Google Scholar 

  • Bose S, Marques FO (2004) Controls on the geometry of tails around rigid circular inclusions: insights from analogue modelling in simple shear. Tectonophysics 26:2145–2156

    Google Scholar 

  • Bouchez JL, Lister GS, Nicolas A (1987) Fabric asymmetry and shear sense in movement zones. Geol Rund 72:401–419

    Article  Google Scholar 

  • Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks. Introduction and general aspects of metamorphism. Part I. Springer, Berlin

    Book  Google Scholar 

  • Cannon RT (1964) Porphyroblastic and augen gneisses in the bartica assemblage, British Guiana. Geol Mag 501:541–547

    Article  Google Scholar 

  • Chattopadhyay N, Ray S, Sanyal S, Sengupta P (2015) Mineralogical, textural and chemical reconstitution of granitic rock in ductile shear zone: a study from a part of the South Purulia Shear Zone, West Bengal, India. In: Mukherjee S, Mulchrone KF (eds) Ductile shear zones: from micro- to macro-scales. Wiley, Chichester, pp 141–163

    Chapter  Google Scholar 

  • Cliff RA, Meffan-Main S (2003) Evidence from Rb-Sr microsampling geochronology for the timing of Alpine deformation in the Sonnblick Dome, SE Taueren Window Australia. In: Vance D, Muller W, Villa IM (eds) Geochronology: Linking the isotropic record with petrology and textures, vol 220. Geological Society London Special, pp 159–172

  • Cosgrove JW (2007) The use of shear zones and related structures as kinematic indicators: a review. In: Ries AC, Butler RWH, Graham R (eds) Deformation of the continental crust: the legacy of Mike Coward, vol 272. Geol Soc, London, Spec Publ, pp 59–74

  • Dabrowski M, Grasemann B (2014) Domino boudinage under layer-parallel simple shear. J Struct Geol 68:58–65

    Article  Google Scholar 

  • Davis GH, Reynolds SJ, Kluth CF (2012) Structural geology of rocks and regions, vol 500, 3rd edn. Wiley, New York, pp 570–571

    Google Scholar 

  • De Sitter LU (1956) Structural geology. McGraw-Hill, London, p 86

    Google Scholar 

  • Dell’Angello LN, Tullis J (1989) Fabric development in experimentally sheared quartzites. Tectonophysics 169:1–21

    Article  Google Scholar 

  • Duretz T, Schmalholz SM (2015) From symmetric necking to localized asymmetric shearing: the role of mechanical layering. Geology 43:711–715

    Article  Google Scholar 

  • Fry N (1997) The field description of metamorphic rocks. Geological Society of London Handbook. Wiley, Chichester

    Google Scholar 

  • Ghosh SK (1993) Structural geology: fundamentals and modern developments. Pergamon Press, Oxford 387

    Google Scholar 

  • Goscombe BD, Passchier CW (2003) Asymmetric boudins as shear sense indicators—an assessment from field data. J Struct Geol 25:575–589

    Article  Google Scholar 

  • Goscombe BD, Passchier CW, Hand M (2004) Boudinage classification: end-member boudin types and modified boudin structures. J Struct Geol 26:739–763

    Article  Google Scholar 

  • Grasemann B, Dabrowski M (2015) Winged inclusions: pinch-and-swell objects during high-strain simple shear. J Struct Geol 70:78–94

    Article  Google Scholar 

  • Grasemann B, Fritz H, Vannay J-C (1999) Quantitative kinematic flow analysis from the main central thrust zone (NW-Himalaya, India): implications for a decelerating strain path and the extrusion of orogenic wedges. J Struct Geol 21:837–853

    Article  Google Scholar 

  • Hanmer S, Passchier CW (1991) Shear sense indicators: a review. Geol Surv Can Pap 90:1–71

    Google Scholar 

  • Hills ES (1963) Elements of structural geology. Methuen and Co Ltd., London, p 302

    Google Scholar 

  • Hobbs B, Ord A (2014) Structural geology: the mechanics of deforming metamorphic rocks. Principles, vol 1. Elsevier, Amsterdam, pp 1–665

  • Hollocher K (2014) A pictorial guide to metamorphic rocks in the field. CRC Press, New York, p 174

    Google Scholar 

  • Hooper RJ, Hatcher RD Jr (1988) Mylonites from the Towaliga fault zone, central Georgia: products of heterogeneous non-coaxial deformation. Tectonophysics 152:1–17

    Article  Google Scholar 

  • Ishii K (1995) Estimation of non-coaxiality from crinoid-type pressure fringes: comparison between natural and simulated examples. J Struct Geol 17:1267–1278

    Article  Google Scholar 

  • Ishii K, Kanagawa K, Shigematsu N et al (2007) High ductility of K-feldspar and development of granitic banded ultramylonite in the Ryoke metamorphic belt, SW Japan. J Struct Geol 29:1083–1098

    Article  Google Scholar 

  • Jain AK, Singh S (2008) Tectonics of the southern Asian Plate margin along the Karakoram Shear Zone: constraints from field observations and U-Pb SHRIMP ages. Tectonophysics 451:186–205

    Article  Google Scholar 

  • Kanagawa K (1996) Simulated pressure fringes, vorticity, and progressive deformation. In: de Paor DG (ed) Structural geology and personal computers. Elsevier, Oxford

    Google Scholar 

  • Kenis I, Urai JL, Sintubin M (2006) The development of bone-shaped structures in initially segmented layers during layer-parallel extension: numerical modelling and parameter sensitivity analysis. J Struct Geol 28:1183–1192

    Article  Google Scholar 

  • Koehn D, Aerden DGAM, Bons PD et al (2001) Computer experiments to investigate complex fibre patterns in natural antitaxial strain fringes. J Meta Geol 19:217–232

    Article  Google Scholar 

  • Kornprobst J (2002) Metamorphic rocks and their geodynamic significance—A petrological handbook. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Lacassin R (1988) Large scale foliation boudinage in gneisses. J Struct Geol 10:643–647

    Article  Google Scholar 

  • Law R, Stahr III DW, Ahmad T et al. (2010) Deformation temperatures and flow vorticities near the base of the greater Himalayan Crystalline Sequence, Sutlej Valley and Shimla Klippe, NW India. In Leech ML et al. (eds) Proceedings for the 25th Himalaya-Karakoram-Tibet Workshop. U.S. Geological Survey, Open-File Report 2010–1099, p 2

  • Le Hebel F, Gapais D, Fourcade S, Capdevila R (2002) Fluid-assisted large strains in a crustal-scale décollement (Hercynian Belt of South Brittany, France). In: De Meer S, Drury MR, De Bresser JHP, Pennock GM (eds) Deformation mechanisms, rheology and tectonics: current status and future perspectives, vol 200. Geol Soc, London, Spec Publ, pp 85–101

  • Leiss B, Groger HR, Ullemeyer K, Lebit H (2002) Textures and microstructures of naturally deformed amphibolites from the northern Cascades, NW USA: methodology and regional aspects. In: de Meer S, Drury MR, de Bresser JHP, Pennock GM (eds) Deformation mechanisms, rheology and tectonics: current status and future perspectives, vol 200. Geol Soc, London, Spec Publ, pp 219–238

  • Lister GS, Snoke AW (1984) S-C Mylonites. J Struct Geol 6:617–638

    Article  Google Scholar 

  • Maeder X, Passchier CW, Koehn DL (2009) Modelling of segment structures: boudins, bone-boudins, mullions and related single- and multiphase deformation features. J Struct Geol 31:817–830

    Article  Google Scholar 

  • Malavielle J, Lacassin R (1988) ‘Bone-shaped’ boudins in progressive shearing. J Struct Geol 10:335–345

    Article  Google Scholar 

  • Mandal N, Samanta SK, Chakraborty C (2000) Progressive development of mantle structures around elongate porphyroclasts: insights from numerical models. J Struct Geol 22:993–1008

    Article  Google Scholar 

  • Mandal N, Samanta SK, Chakraborty C (2004) Problem of folding in ductile shear zones: a theoretical and experimental investigation. J Struct Geol 26:475–489

    Article  Google Scholar 

  • Marques FO, Taborda R, Bose S et al (2005) Effects of confinement on matrix flow around a rigid inclusion in viscous simple shear: insights from analogue and numerical modeling. J Struct Geol 27:379–396

    Article  Google Scholar 

  • Mason R (1978) Petrology of the metamorphic rocks. George Allen & Unwin, London

  • Masuda T, Mizuno N (1995) Deflection of pure shear viscous flow around a rigid spherical body. J Struct Geol 17:1615–1629

    Article  Google Scholar 

  • Menegon L, Pennacchioni G, Stünitz H (2006) Nucleation and growth of myrmekite during ductile shear deformation in metagranites. J Metamorph Geol 24:553–568

    Article  Google Scholar 

  • Menegon L, Pennacchioni G, Spiess R (2008) Dissolution-precipitation creep of K-feldspar in mid-crustal granite mylonites. J Struct Geol 30:565–579

    Article  Google Scholar 

  • Misra AA, Mukherjee S (2016) Dyke-brittle shear relationships in the Western Deccan Strike Slip Zone around Mumbai (Maharashtra, India). In: Mukherjee S, Misra AA, Calvès G, Nemčok M (eds) Tectonics of the Deccan large Igneous Province. Geological Society, London, Special Publications

  • Mukherjee S (2011a) Mineral Fish: their morphological classification, usefulness as shear sense indicators and genesis. Int J Earth Sci 100:1303–1314

    Article  Google Scholar 

  • Mukherjee S (2011b) Flanking Microstructures from the Zanskar Shear Zone, NW Indian Himalaya. YES Bull 1:21–29

    Google Scholar 

  • Mukherjee S (2012) Simple shear is not so simple! Kinematics and shear senses in Newtonian viscous simple shear zones. Geol Mag 149:819–826

    Article  Google Scholar 

  • Mukherjee S (2013a) Deformation microstructures in rocks. Springer, Berlin

    Book  Google Scholar 

  • Mukherjee S (2013b) Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. Int J Earth Sci 102:1811–1835

    Article  Google Scholar 

  • Mukherjee S (2013c) Higher Himalaya in the Bhagirathi section (NW Himalaya, India): its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms. Int J Sci 102:1851–1870

    Google Scholar 

  • Mukherjee S (2013d) Symmetric and near-symmetric objects in ductile shear zones- examples from Higher Himalaya, Bhagirathi section, India. Geophys Res Abs 15:2585

    Google Scholar 

  • Mukherjee S (2014) Atlas of shear zone structures in meso-scale. Springer, Cham

    Book  Google Scholar 

  • Mukherjee S (2015) Atlas of structural geology. Elsevier, Amsterdam

    Google Scholar 

  • Mukherjee S, Biswas R (2014) Kinematics of horizontal simple shear zones of concentric arcs (Taylor Couette flow) with incompressible Newtonian rheology. Int J Earth Sci 103:597–602

    Article  Google Scholar 

  • Mukherjee S, Biswas R (2015) Biviscous horizontal simple shear zones of concentric arcs (Taylor Couette flow) with incompressible Newtonian rheology. In: Mukherjee S, Mulchrone KF (eds) Ductile shear zones: from micro- to macro-scales. Wiley, Chichester, pp 59–62

    Chapter  Google Scholar 

  • Mukherjee S, Koyi HA (2009) Flanking microstructures. Geol Mag 146:517–526

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2010a) Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci 99:1267–1303

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2010b) Higher Himalayan Shear Zone, Zanskar Indian Himalaya: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. Int J Earth Sci 99:1083–1110

    Article  Google Scholar 

  • Mukherjee S, Mulchrone KF (2012) Estimating the viscosity and Prandtl number of the Tso Morari crystalline gneiss dome, Indian western Himalaya. Int J Earth Sci 101:1929–1947

    Article  Google Scholar 

  • Mukherjee S, Mulchrone KF (2013) Viscous dissipation pattern in incompressible Newtonian simple shear zones: an analytical model. Int J Earth Sci 102:1165–1170

    Article  Google Scholar 

  • Mukherjee S, Koyi HA, Talbot CJ (2012) Implications of channel flow analogue models for extrusion of the Higher Himalayan Shear Zone with special reference to the out-of-sequence thrusting. Int J Earth Sci 101:253–272

    Article  Google Scholar 

  • Mukherjee S, Mukherjee B, Thiede R (2013) Geosciences of the Himalaya-Karakoram-Tibet Orogen. Int J Earth Sci 102:1757–1758

    Article  Google Scholar 

  • Mukherjee S, Carosi R, van der Beek PA et al (2015a) Tectonics of the Himalaya: an introduction. Geol Soc London Specl Publ 412:1–3

    Article  Google Scholar 

  • Mukherjee S, Punekar J, Mahadani T, Mukherjee R (2015b) Intrafolial folds: review and examples from the western Indian Higher Himalaya. In: Mukherjee S, Mulchrone KF (eds) Ductile shear zones: from micro- to macro-scales, 1st edn. Wiley, Chichester, pp 182–205

    Chapter  Google Scholar 

  • Mukherjee S, Misra AA, Calvès G et al. (2016) Tectonics of the Deccan Large Igneous Province: an introduction. Geological Society London Special Publications, London (in press)

  • Mulchrone KF, Mukherjee S (2015) Shear Senses and Viscous Dissipation of Layered Ductile Simple Shear Zones. Pure appl Geophys 172:2635–2642

    Article  Google Scholar 

  • Nabelek PI, Whittington AG, Hofmeister AM (2010) Strain heating as a mechanism for partial melting and ultrahigh temperature metamorphism in convergent orogens: implications of temperature dependent thermal diffusivity and rheology. J Geophys Res 115:B12417

    Article  Google Scholar 

  • Nicolas A (1987) Principles of rocks deformation. D. Reidel Publishing Company, Dordrecht, p 88

    Book  Google Scholar 

  • Ord A, Hobbs B (2013) Localized folding in general deformations. Tectonophysics 583:30–45

    Article  Google Scholar 

  • Passchier CW (1994) Mixing in flow perturbations: a model for development of mantled porphyroclasts in mylonites. J Struct Geol 16:733–736

    Article  Google Scholar 

  • Passchier CW (2001) Flanking structures. J Struct Geol 23:951–962

    Article  Google Scholar 

  • Passchier CW (2008) Pseudo-boudins in Pegmatite, Arunta, Australia. J Struct Geol 30:273

    Article  Google Scholar 

  • Passchier C, Coelho S (2006) An outline of shear-sense analysis in high-grade rocks. Gond Res 10:66–76

    Article  Google Scholar 

  • Passchier CW, Sokoutis D (1993) Experimental modelling of mantled porphyroclasts. J Struct Geol 15:895–909

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin

    Google Scholar 

  • Passchier CW, Myers JS, Kroner A (1990) Field Geology of High-Grade Gneiss Terrains. Springer, Berlin

    Book  Google Scholar 

  • Philips E (2006) Micromorphology of a debris flow deposit: evidence of basal shearing, hydrofracturing, liquefaction and rotational deformation during emplacement. Quater Sci Rev 25:720–738

    Article  Google Scholar 

  • Ponce C (2014) Structural analyses of tectonic lozenges in anisotropic rocks: field analysis and experimental modelling. Ph.D. Thesis. Universitat Autonoma de Bercelona. pp. 1–141

  • Ponce C, Druguet E, Carreras J (2013) Development of shear zone-related lozenges in foliated rocks. J Struct Geol 50:176–186

    Article  Google Scholar 

  • Ramberg H (1952) The origin of metamorphic and metasomatic rocks. The University of Chicago Press, Chicago, pp 233–234

    Google Scholar 

  • Ree J-H, Kim HS, Han R, Jung H (2005) Grain-size reduction of feldspars by fracturing and neocrystallization in a low-grade granitic mylonite and its rheological effect. Tectonophysics 407:227–237

    Article  Google Scholar 

  • Regenauer-Lieb K, Yuen DA (2003) Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal–mechanical approaches. Earth Sci Rev 63:295–349

    Article  Google Scholar 

  • Roshoff K (1979) Deformation structures in the Tannas augen gneiss. In: Easterling KE (ed) Mechanism of deformation and fracture. Pergamon Press Ltd., Oxford, pp 159–172

    Chapter  Google Scholar 

  • Simpson C, Schmid SM (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. Geol Soc Am Bull 94:1281–1288

    Article  Google Scholar 

  • Simpson C, Winsch RP (1989) Evidence for deformation-induced K-feldspar replacement by myrmekite. J Metamorph Geol 7:261–275

    Article  Google Scholar 

  • Smith JV (1974) Feldspar minerals: chemical and textural properties. Springer, Berlin

    Book  Google Scholar 

  • Spry A (1969) Metamorphic textures. Pergamon Press, Oxford, pp 242–247

    Google Scholar 

  • Spry A (1974) Metamorphic textures. Pergamon Press, Oxford, pp 240–246

    Google Scholar 

  • ten Grotenhuis SM, Trouw RAJ, Passchier CW (2003) Evolution of mica fish in mylonitic rocks. Tectonophysics 372:1–21

    Article  Google Scholar 

  • Treagus S, Lan L (2000) Pure shear deformation of square objects, and applications to geological strain analysis. J Struct Geol 22:105–122

    Article  Google Scholar 

  • Treagus S, Lan L (2003) Simple shear of deformable square objects. J Struct Geol 25:1993–2003

    Article  Google Scholar 

  • Trouw RAJ, Passchier CW, Wiersma DJ (2010) Atlas of Mylonites- and related microstructures. Springer, Berlin

    Google Scholar 

  • Turner FJ, Verhoogen J (1951) Igneous and metamorphic petrology. McGraw Hill, New York, p 61

    Google Scholar 

  • van der Wateren FM, Kluiving SJ, Bartek LR (2000) Kinematic indicators of subglacial shearing. In: Maltman AJ, Hubbard B, Hambrey MJ (eds) Deformation of glacial materials, vol 176. Geol Soc, London, Spec Publ, pp 259–278

  • Vernon RH (1986) K-feldspar megacrysts in granites- phenocrysts not porphyroblasts. Earth Sci Rev 23:1–63

    Article  Google Scholar 

  • Vernon R (1990) K-feldspar augen in felsic gneisses and mylonites—deformed phenocrysts or porphyroblasts? Geologiska Foreningens i Stockholm Forhandlingar 112:157–167

    Article  Google Scholar 

  • Vernon RH (2004) A practical guide to rock microstructure. Press Syndicate of the University of Cambridge, Cambridge

    Book  Google Scholar 

  • Vernon RH, Clarke GL (2008) Principles of metamorphic petrology. Cambridge University Press, New York, pp 326–345

    Google Scholar 

  • Vidal JL, Kubin L, Debat P, Soula JC (1980) Deformation and dynamic recrystallization of K-feldspar augen in orthogneiss from Montagne Noire, Occitania, Southern France. Lithos 13:247–255

    Article  Google Scholar 

  • White SH (2010) Mylonites: lessons from Eriboll. In: Law RD, Butler RWH, Holdsworth RE, Krabbendam M, Strachan RA (eds) Continental tectonics and mountain building: the legacy of peach and horne, vol 335. Geol Soc, London, Spec Publ, pp 505–542

  • Whitten EHT (1966) Structural geology of folded rocks. Rand McNally & Company, Chicago, p 306

    Google Scholar 

  • Winter JD (2009) Principles of igneous and metamorphic petrology, 2nd edn. Prentice Hall, New Jersey, p 473

    Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, extrusion history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

Download references

Acknowledgments

IIT Bombay funded partially. Ripun Kumar Gogoi (IIT Bombay) prepared few diagrams. Reviewer: David Iacopini. Editors: Karel Schulmann, Christian- and Monika Dullo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S. Review on symmetric structures in ductile shear zones. Int J Earth Sci (Geol Rundsch) 106, 1453–1468 (2017). https://doi.org/10.1007/s00531-016-1366-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1366-4

Keywords

Navigation