Skip to main content
Erschienen in: Microsystem Technologies 1/2009

01.01.2009 | Technical Paper

Influence of material stiffness and geometrical variations on the electro-thermally driven microactuator performance

verfasst von: M. Shamshirsaz, M. Maroufi, M. B. Asgari, M. Gheisarieha

Erschienen in: Microsystem Technologies | Ausgabe 1/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to make robust design of microdevices, it is important to implement a model considering uncertainty analysis. The high cost of experimentation and product development has led to an emphasis on simulated based design to achieve the success in the first-pass design and reliability. In this paper, finite element model is developed to investigate the effects of geometrical and material stiffness variations on an electro-thermally driven microactuator performance as an example. These microactuators are generally composed of two suspended beam (arm) joined at the free end. This device generates deflection through asymmetric heating of the hot and cold polysilicon arms with variable length or cross-section. These microactuators based on the force and deflection characteristic of elastic members are particularly sensitive to uncertainty in material properties. Polysilicon as a microdevice material shows a wide variation rang for Young’s modulus from batch to batch fabrication process. Also, the microfabrication process that are utilized for microdevice production can yield sometimes shapes that are not geometrically perfect, either due to the microfabrication process limitations itself or because of phenomena that take place during or after microfabrication. These geometrical errors can decrease the net cross section and will affect both modeling and experimental results. The effect of fillet radius at the juncture of this flexible microactuator and contact pads is investigated in this model. The residual stresses due to the fabrication process are taken into account too. The analysis is performed at multiple input voltages to estimate uncertainty bands around the deflection curve of the microactuator. Simulation results are compared with experimental results in literature. The results demonstrate how each of these factors affects the microactuator performance and justifies the deviation of previous nominal results from experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Atre A (2006) Analysis of out-of-plane thermal microactuators. J Micromech Microeng 16:205–213CrossRef Atre A (2006) Analysis of out-of-plane thermal microactuators. J Micromech Microeng 16:205–213CrossRef
Zurück zum Zitat Chiao M, Lin L (2000) Self-buckling of micromachined beams under resistive heating. J Micromech Microeng 9:146–151 Chiao M, Lin L (2000) Self-buckling of micromachined beams under resistive heating. J Micromech Microeng 9:146–151
Zurück zum Zitat Huang QA, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9:6470CrossRef Huang QA, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9:6470CrossRef
Zurück zum Zitat Huang QA, Lee NKS (2000) A simple approach to characterizing the driving force of polysilicon laterally driven thermal microactuators. Sens Actuators A 80:267–272CrossRef Huang QA, Lee NKS (2000) A simple approach to characterizing the driving force of polysilicon laterally driven thermal microactuators. Sens Actuators A 80:267–272CrossRef
Zurück zum Zitat Kuang Y, Huang QA, Lee NKS (2002) Numerical simulation of a polysilicon thermal flexure actuator. J Microsyst Technol 8:17–21CrossRef Kuang Y, Huang QA, Lee NKS (2002) Numerical simulation of a polysilicon thermal flexure actuator. J Microsyst Technol 8:17–21CrossRef
Zurück zum Zitat Pan CS, Hsu W (1997) An electro-thermally and laterally driven polysilicon microactuator. J Micromech Microeng 7:7–13CrossRef Pan CS, Hsu W (1997) An electro-thermally and laterally driven polysilicon microactuator. J Micromech Microeng 7:7–13CrossRef
Zurück zum Zitat Shamshirsaz M, Asgari MB (2003) Effect of temperature-dependent thermo-mechanical properties on electrothermal buckling of polysilicon micro beams. In: Proceedings of micro system technoly, Munich, 7–8 October, vol 1, pp 574–576 Shamshirsaz M, Asgari MB (2003) Effect of temperature-dependent thermo-mechanical properties on electrothermal buckling of polysilicon micro beams. In: Proceedings of micro system technoly, Munich, 7–8 October, vol 1, pp 574–576
Zurück zum Zitat Shamshirsaz M, Gheisarieha M (2004) Analysis of polysilicon electrothermal flexure microactuators with temperature-dependent properties. In: Proceedigns of European micro nano system (EMN04), Paris, 20–21 October, vol 1, pp 113–116 Shamshirsaz M, Gheisarieha M (2004) Analysis of polysilicon electrothermal flexure microactuators with temperature-dependent properties. In: Proceedigns of European micro nano system (EMN04), Paris, 20–21 October, vol 1, pp 113–116
Zurück zum Zitat Sharp WN, Jackson KM, Hemker KJ, Xie Z (2006) Effect of specimen size on Young’s modulus and fracture strength of polysilicon. J Micromech Syst 10(3):317–326CrossRef Sharp WN, Jackson KM, Hemker KJ, Xie Z (2006) Effect of specimen size on Young’s modulus and fracture strength of polysilicon. J Micromech Syst 10(3):317–326CrossRef
Zurück zum Zitat Wittwer JW (2005) Simulation-based design under uncertainty for compliant microelectromechanical systems. PhD Thesis. Brigham Young University, Provo Wittwer JW (2005) Simulation-based design under uncertainty for compliant microelectromechanical systems. PhD Thesis. Brigham Young University, Provo
Zurück zum Zitat Wittwer JW, Howell LL, Wait SM, Cherry MS (2002) Predicting the performance of a bistable micro mechanism using design-stage uncertainty analysis. In: Proceeding of IMECE’02, ASME international mechanical engineering congress, New Orleans, Louisiana, 17–22 November Wittwer JW, Howell LL, Wait SM, Cherry MS (2002) Predicting the performance of a bistable micro mechanism using design-stage uncertainty analysis. In: Proceeding of IMECE’02, ASME international mechanical engineering congress, New Orleans, Louisiana, 17–22 November
Zurück zum Zitat Wittwer JW, Baker MS, Howell LL (2006) Robust design and model validation of nonlinear compliant micromechanisms. J Micromech Syst 151:33–41CrossRef Wittwer JW, Baker MS, Howell LL (2006) Robust design and model validation of nonlinear compliant micromechanisms. J Micromech Syst 151:33–41CrossRef
Zurück zum Zitat Yan D, Khajehpour A, Mansour R (2003) Modeling of two-hot-arm horizontal thermal actuator. J Micromech Microeng 13:312–322CrossRef Yan D, Khajehpour A, Mansour R (2003) Modeling of two-hot-arm horizontal thermal actuator. J Micromech Microeng 13:312–322CrossRef
Metadaten
Titel
Influence of material stiffness and geometrical variations on the electro-thermally driven microactuator performance
verfasst von
M. Shamshirsaz
M. Maroufi
M. B. Asgari
M. Gheisarieha
Publikationsdatum
01.01.2009
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 1/2009
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-008-0636-x

Weitere Artikel der Ausgabe 1/2009

Microsystem Technologies 1/2009 Zur Ausgabe

Neuer Inhalt