Skip to main content
Erschienen in: Microsystem Technologies 8-9/2010

01.08.2010 | Technical Paper

Development of a biological detection platform utilizing a modular microfluidic stack

verfasst von: Niklas Frische, Proyag Datta, Jost Goettert

Erschienen in: Microsystem Technologies | Ausgabe 8-9/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of this project is to build a miniaturized, user-friendly cytometry setup (Datta et al. in Microfluidic platform for education and research. COMS, Baton Rouge, 2008; Frische et al. in Development of an miniaturized flow cytometry setup for visual cell inspection and sorting. Baton Rouge, Project Report, 2008) by combining a customized, microfluidic device with visual microscope inspection to detect and extract specific cells from a continuous sample flow. We developed a cytological tool, based on the Coulter particle counter principle, using a microelectrode array patterned on a borosilicate glass chip as electrical detection set-up which is fully embedded into a polymeric multi-layer microfluidic stack. The detection takes place between pairs of coplanar Cr/Au microelectrodes by sensing an impedance change caused by particles continuously carried within a microfluidic channel across the detection area under laminar flow conditions. A wide frequency range available for counting provides information on cell size, membrane capacitance, cytoplasm conductivity and is potentially of interest for in-depth cell diagnostic e.g. to detect damaged or cancerous cells and select them for extraction and further in-depth analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abgrall P, Gue AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17(5):R15–R49CrossRef Abgrall P, Gue AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17(5):R15–R49CrossRef
Zurück zum Zitat Batalioto F, Barbero G, Neto AMF (2007) Impedance spectroscopy analysis of an electrolytic cell limited by Ohmic electrodes: the case of ions with two different diffusion coefficients dispersed in an aqueous solution. J Appl Phys 102(10) Batalioto F, Barbero G, Neto AMF (2007) Impedance spectroscopy analysis of an electrolytic cell limited by Ohmic electrodes: the case of ions with two different diffusion coefficients dispersed in an aqueous solution. J Appl Phys 102(10)
Zurück zum Zitat Becker H, Gaertner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111CrossRef Becker H, Gaertner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111CrossRef
Zurück zum Zitat Cheung K, Gawad S, Renaud P (2005) Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytometry Part A 65A(2):124–132CrossRef Cheung K, Gawad S, Renaud P (2005) Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytometry Part A 65A(2):124–132CrossRef
Zurück zum Zitat Cleary F (2005) Microfluidic devices for biological applications Cleary F (2005) Microfluidic devices for biological applications
Zurück zum Zitat Datta P, Hammacher J, Pease M, Gurung S, Goettert J (2006) Development of an integrated polymer microfluidic stack. J Phys Conf Ser 34:853–858CrossRef Datta P, Hammacher J, Pease M, Gurung S, Goettert J (2006) Development of an integrated polymer microfluidic stack. J Phys Conf Ser 34:853–858CrossRef
Zurück zum Zitat Datta P, Goettert J, Frische N, Prange A, Prange A (2008) Microfluidic platform for education and research. COMS, Baton Rouge Datta P, Goettert J, Frische N, Prange A, Prange A (2008) Microfluidic platform for education and research. COMS, Baton Rouge
Zurück zum Zitat Dittami GM, Ayliffe HE, King CS, Rabbitt RD (2008) A multilayer MEMS platform for single-cell electric impedance spectroscopy and electrochemical analysis. J Microelectromech Syst 17(4):850–862CrossRef Dittami GM, Ayliffe HE, King CS, Rabbitt RD (2008) A multilayer MEMS platform for single-cell electric impedance spectroscopy and electrochemical analysis. J Microelectromech Syst 17(4):850–862CrossRef
Zurück zum Zitat Foster KR, Schepps JL (1981) Dielectric-properties of tumor and normal-tissues at radio through microwave-frequencies. J Microw Power Electromagn Energy 16(2):107–119 Foster KR, Schepps JL (1981) Dielectric-properties of tumor and normal-tissues at radio through microwave-frequencies. J Microw Power Electromagn Energy 16(2):107–119
Zurück zum Zitat Frische N, Datta P, Goettert J (2008) Development of an miniaturized flow cytometry setup for visual cell inspection and sorting. Baton Rouge, Project Report Frische N, Datta P, Goettert J (2008) Development of an miniaturized flow cytometry setup for visual cell inspection and sorting. Baton Rouge, Project Report
Zurück zum Zitat Fukuda H, Takahashi J, Watanabe K, Hayashi H, Morizane A, Koyanagi M, Sasai Y, Hashimoto N (2006) Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells 24:763–771CrossRef Fukuda H, Takahashi J, Watanabe K, Hayashi H, Morizane A, Koyanagi M, Sasai Y, Hashimoto N (2006) Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells 24:763–771CrossRef
Zurück zum Zitat Gawad S, Schild L, Renaud P (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1(1):76–82CrossRef Gawad S, Schild L, Renaud P (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1(1):76–82CrossRef
Zurück zum Zitat Gawad S, Cheung K, Seger U, Bertsch A, Renaud P (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4(3):241–251CrossRef Gawad S, Cheung K, Seger U, Bertsch A, Renaud P (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4(3):241–251CrossRef
Zurück zum Zitat Gimsa J, Wachner D (1998) A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential. Biophys J 75(2):1107–1116CrossRef Gimsa J, Wachner D (1998) A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential. Biophys J 75(2):1107–1116CrossRef
Zurück zum Zitat Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110CrossRef Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110CrossRef
Zurück zum Zitat Han A, Graff M, Wang O, Mohanty SK, Han K-H, Frazier AB (2003) Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Lab Chip 3:150–157CrossRef Han A, Graff M, Wang O, Mohanty SK, Han K-H, Frazier AB (2003) Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Lab Chip 3:150–157CrossRef
Zurück zum Zitat Huh D, Gu W, Kamotani Y, Grotberg JB, Takayama S (2005) Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26:R73–R98CrossRef Huh D, Gu W, Kamotani Y, Grotberg JB, Takayama S (2005) Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26:R73–R98CrossRef
Zurück zum Zitat Iliescu C, Poenar DP, Carp M, Loe FC (2007) A microfluidic device for impedance spectroscopy analysis of biological samples. Sens Actuators B Chem 123(1):168–176CrossRef Iliescu C, Poenar DP, Carp M, Loe FC (2007) A microfluidic device for impedance spectroscopy analysis of biological samples. Sens Actuators B Chem 123(1):168–176CrossRef
Zurück zum Zitat Kruse C (2006) Zelldifferenzierung und Zelltechnologie. FraunhoferInstitut. Annual Report 2006 Kruse C (2006) Zelldifferenzierung und Zelltechnologie. FraunhoferInstitut. Annual Report 2006
Zurück zum Zitat Lee HH, Yager P (2007) Microfluidic lab-on-a-chip for microbial identification on a DNA microarray. Biotechnol Bioprocess Eng 12(6):634–639CrossRef Lee HH, Yager P (2007) Microfluidic lab-on-a-chip for microbial identification on a DNA microarray. Biotechnol Bioprocess Eng 12(6):634–639CrossRef
Zurück zum Zitat Luo CP, Heeren A, Fleischer M, Kern DP (2006) Design of a lab-on-a-chip system for selective extraction of particles from a concentration gradient in a microfluidic channel. Interface Newsl, pp 55–66 Luo CP, Heeren A, Fleischer M, Kern DP (2006) Design of a lab-on-a-chip system for selective extraction of particles from a concentration gradient in a microfluidic channel. Interface Newsl, pp 55–66
Zurück zum Zitat Mcadams ET, Lackermeier A, Mclaughlin JA, Macken D, Jossinet J (1995) The linear and nonlinear electrical-properties of the electrode–electrolyte interface. Biosens Bioelectron 10(1–2):67–74CrossRef Mcadams ET, Lackermeier A, Mclaughlin JA, Macken D, Jossinet J (1995) The linear and nonlinear electrical-properties of the electrode–electrolyte interface. Biosens Bioelectron 10(1–2):67–74CrossRef
Zurück zum Zitat Mokkapatim OMP, Zhang L, Mollinger J, Bastemeijer J, Bossche A (2006) PDMS–glass bonded microfluidic device for single cell analysis: testing, alignment, bonding and trapping of polystyrene beads 415–419 Mokkapatim OMP, Zhang L, Mollinger J, Bastemeijer J, Bossche A (2006) PDMS–glass bonded microfluidic device for single cell analysis: testing, alignment, bonding and trapping of polystyrene beads 415–419
Zurück zum Zitat Morgan H, Holmes D, Green N (2004) AC electrokinetic focussing in microchannels: micro- and nanoparticles. Electrostatics 2003(178):119–124 Morgan H, Holmes D, Green N (2004) AC electrokinetic focussing in microchannels: micro- and nanoparticles. Electrostatics 2003(178):119–124
Zurück zum Zitat Morgan H, Sun T, Holmes D, Gawad S, Green NG (2007) Single cell dielectric spectroscopy. J Phys D Appl Phys 40(1):61–70CrossRef Morgan H, Sun T, Holmes D, Gawad S, Green NG (2007) Single cell dielectric spectroscopy. J Phys D Appl Phys 40(1):61–70CrossRef
Zurück zum Zitat Ra GS, Yoo JC, Kang CJ, Kim YS (2008) Microfabricated in-channel structured polydimethylsiloxane microfluidic system for a lab-on-a-chip. J Nanosci Nanotechnol 8(9):4588–4592CrossRef Ra GS, Yoo JC, Kang CJ, Kim YS (2008) Microfabricated in-channel structured polydimethylsiloxane microfluidic system for a lab-on-a-chip. J Nanosci Nanotechnol 8(9):4588–4592CrossRef
Zurück zum Zitat Robinson DA (1968) Electrical properties of metal microelectrodes. Proc IEEE 56(6):1065–1071CrossRef Robinson DA (1968) Electrical properties of metal microelectrodes. Proc IEEE 56(6):1065–1071CrossRef
Zurück zum Zitat Schwan HP, Takashim S, Miyamoto VK, Stoecken W (1970) Electrical properties of phospholipid vesicles. Biophys J 10(11):1102–1119CrossRef Schwan HP, Takashim S, Miyamoto VK, Stoecken W (1970) Electrical properties of phospholipid vesicles. Biophys J 10(11):1102–1119CrossRef
Zurück zum Zitat Sekine K (2000) Application of boundary element method to calculation of the complex permittivity of suspensions of cells in shape of D-infinity h symmetry. Bioelectrochemistry 52(1):1–7CrossRef Sekine K (2000) Application of boundary element method to calculation of the complex permittivity of suspensions of cells in shape of D-infinity h symmetry. Bioelectrochemistry 52(1):1–7CrossRef
Zurück zum Zitat Sun T, Gawad S, Bernabini C, Green NG, Morgan H (2007) Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations. Meas Sci Technol 18(9):2859–2868CrossRef Sun T, Gawad S, Bernabini C, Green NG, Morgan H (2007) Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations. Meas Sci Technol 18(9):2859–2868CrossRef
Zurück zum Zitat Yasukawa T, Glidle A, Nomura M, Cooper JM (2005) Fabrication of robust 2-D and 3-D microfluidic networks for lab-on-a-chip bioassays. J Microelectromech Syst 14(4):839–846CrossRef Yasukawa T, Glidle A, Nomura M, Cooper JM (2005) Fabrication of robust 2-D and 3-D microfluidic networks for lab-on-a-chip bioassays. J Microelectromech Syst 14(4):839–846CrossRef
Zurück zum Zitat Zhu XL, Liu G, Guo YH, Tian YC (2007) Study of PMMA thermal bonding. Microsyst Technol Micro Nanosyst Info Storage Process Syst 13(3–4):403–407 Zhu XL, Liu G, Guo YH, Tian YC (2007) Study of PMMA thermal bonding. Microsyst Technol Micro Nanosyst Info Storage Process Syst 13(3–4):403–407
Metadaten
Titel
Development of a biological detection platform utilizing a modular microfluidic stack
verfasst von
Niklas Frische
Proyag Datta
Jost Goettert
Publikationsdatum
01.08.2010
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 8-9/2010
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-010-1066-0

Weitere Artikel der Ausgabe 8-9/2010

Microsystem Technologies 8-9/2010 Zur Ausgabe

Neuer Inhalt