Skip to main content
Erschienen in: Microsystem Technologies 4/2012

01.04.2012 | Technical Paper

A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz

verfasst von: Huicong Liu, Chengkuo Lee, Takeshi Kobayashi, Cho Jui Tay, Chenggen Quan

Erschienen in: Microsystem Technologies | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a new S-shaped piezoelectric PZT cantilever is microfabricated for scavenging vibration energy at low frequencies (<30 Hz) and low accelerations (<0.4g). The maximum voltage and normalized power are 42 mV and 0.31 μW g −2, respectively, at input acceleration of 0.06g. For acceleration above 0.06g, the vibration of PZT cantilever changes from a linear oscillation to a nonlinear impact oscillation due to the displacement constraint introduced by a mechanical stopper. Based on theoretical modeling and experimental results, the frequency broadening effect of the PZT cantilever is studied with varying stop distances and input accelerations. The operation bandwidth of the piezoelectric PZT cantilever is able to extend from 3.4 to 11.1 Hz as the stop distance reduces from 1.7 to 0.7 mm for an acceleration of 0.3g, at the expense of the voltage and normalized power at resonance decreasing from 40 to 16 mV and from 17.8 to 2.8 nW g−2, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21CrossRef
Zurück zum Zitat Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:175–195CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:175–195CrossRef
Zurück zum Zitat Blystad L-CJ, Halvorsen E (2010) A piezoelectric energy harvester with a mechanical end stop on one side. Microsyst Technol 17:505–511CrossRef Blystad L-CJ, Halvorsen E (2010) A piezoelectric energy harvester with a mechanical end stop on one side. Microsyst Technol 17:505–511CrossRef
Zurück zum Zitat Burrow SG, Clare LR (2007) A resonant generator with non-linear compliance for energy harvesting in high vibrational environments. In: IEEE International Electric Machines and Drives Conference, pp 715–720 Burrow SG, Clare LR (2007) A resonant generator with non-linear compliance for energy harvesting in high vibrational environments. In: IEEE International Electric Machines and Drives Conference, pp 715–720
Zurück zum Zitat Challa VR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater Struct 17:015035CrossRef Challa VR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater Struct 17:015035CrossRef
Zurück zum Zitat Eichhorn C, Tchagsim R, Wilhelm N, Woias P (2011) A smart and self-sufficient frequency tunable vibration energy harvester. J Micromech Microeng 21:104003CrossRef Eichhorn C, Tchagsim R, Wilhelm N, Woias P (2011) A smart and self-sufficient frequency tunable vibration energy harvester. J Micromech Microeng 21:104003CrossRef
Zurück zum Zitat Elfrink R, Kamel TM, Goedbloed M, Matova S, Hohlfeld D, van Andel Y, van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19:094005CrossRef Elfrink R, Kamel TM, Goedbloed M, Matova S, Hohlfeld D, van Andel Y, van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19:094005CrossRef
Zurück zum Zitat Galchev T, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Sys 20:852–866 Galchev T, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Sys 20:852–866
Zurück zum Zitat Gu L (2011) Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron J 42:277–282CrossRef Gu L (2011) Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron J 42:277–282CrossRef
Zurück zum Zitat Hajaji A, Kim S-G (2011) Ultra-wide bandwidth piezoelectric energy harvesting. Appl Phys Lett 99:083105CrossRef Hajaji A, Kim S-G (2011) Ultra-wide bandwidth piezoelectric energy harvesting. Appl Phys Lett 99:083105CrossRef
Zurück zum Zitat Hatipoglu G, Urey H (2010) FR4-based electromagnetic energy harvester for wireless sensor nodes. Smart Mater Struct 19:015022CrossRef Hatipoglu G, Urey H (2010) FR4-based electromagnetic energy harvester for wireless sensor nodes. Smart Mater Struct 19:015022CrossRef
Zurück zum Zitat Lee BS, Lin SC, Wu WJ, Wang XY, Chang PZ, Lee CK (2009) Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J Micromech Microeng 19:065014CrossRef Lee BS, Lin SC, Wu WJ, Wang XY, Chang PZ, Lee CK (2009) Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J Micromech Microeng 19:065014CrossRef
Zurück zum Zitat Leland ES, Wright PK (2006) Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15:1413–1420CrossRef Leland ES, Wright PK (2006) Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15:1413–1420CrossRef
Zurück zum Zitat Liu JQ, Fang HB, Xu ZY, Mao XH, Shen XC, Chen D, Liao H, Cai BC (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39:802–806CrossRef Liu JQ, Fang HB, Xu ZY, Mao XH, Shen XC, Chen D, Liao H, Cai BC (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39:802–806CrossRef
Zurück zum Zitat Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011a) Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectromech Syst 20(5):1131–1142CrossRef Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011a) Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectromech Syst 20(5):1131–1142CrossRef
Zurück zum Zitat Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011b) A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors. Microsyst Technol 17:1747–1754CrossRef Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011b) A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors. Microsyst Technol 17:1747–1754CrossRef
Zurück zum Zitat Lo H, Tai Y (2008) Parylene-based electrets power generators. J Micromech Microeng 18:104006CrossRef Lo H, Tai Y (2008) Parylene-based electrets power generators. J Micromech Microeng 18:104006CrossRef
Zurück zum Zitat Marzenki M, Defosseux M, Basrour S (2009) MEMS vibration energy harvesting devices with passive resonance frequency adaption capability. J Microelectromech Syst 18:1444–1453CrossRef Marzenki M, Defosseux M, Basrour S (2009) MEMS vibration energy harvesting devices with passive resonance frequency adaption capability. J Microelectromech Syst 18:1444–1453CrossRef
Zurück zum Zitat Miller LM, Halvorsen E, Dong T, Wright PK (2011) Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations. J Micromech Microeng 21:045029CrossRef Miller LM, Halvorsen E, Dong T, Wright PK (2011) Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations. J Micromech Microeng 21:045029CrossRef
Zurück zum Zitat Mitcheson PD, Green TC, Yeatman EM, Holmes AS (2004) Architectures for vibration-driven micropower generators. J Microelectromech Syst 13:429–440CrossRef Mitcheson PD, Green TC, Yeatman EM, Holmes AS (2004) Architectures for vibration-driven micropower generators. J Microelectromech Syst 13:429–440CrossRef
Zurück zum Zitat Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:1457–1486CrossRef Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:1457–1486CrossRef
Zurück zum Zitat Narimani A, Golnaraghi MF, Jazar GN (2004) Frequency response of a piecewise linear vibration isolator. J Vib Control 10:1775–1794MATHCrossRef Narimani A, Golnaraghi MF, Jazar GN (2004) Frequency response of a piecewise linear vibration isolator. J Vib Control 10:1775–1794MATHCrossRef
Zurück zum Zitat Naruse Y, Matsubara N, Mabuchi K, Izumi M, Suzuki S (2009) Electrostatic micro power generation from low-frequency vibration such as human motion. J Micromech Microeng 19:094002CrossRef Naruse Y, Matsubara N, Mabuchi K, Izumi M, Suzuki S (2009) Electrostatic micro power generation from low-frequency vibration such as human motion. J Micromech Microeng 19:094002CrossRef
Zurück zum Zitat Nguyen SD, Halvorsen E (2011) Nonlinear springs for bandwidth-tolerant vibration energy harvesting. J Microelectromech Syst 20(6):1225–1227CrossRef Nguyen SD, Halvorsen E (2011) Nonlinear springs for bandwidth-tolerant vibration energy harvesting. J Microelectromech Syst 20(6):1225–1227CrossRef
Zurück zum Zitat Park JC, Park JY, Lee Y-P (2010) Modeling and characterization of piezoelectric d33-mode MEMS energy harvester. J Microelectromech Syst 19:1215–1222CrossRef Park JC, Park JY, Lee Y-P (2010) Modeling and characterization of piezoelectric d33-mode MEMS energy harvester. J Microelectromech Syst 19:1215–1222CrossRef
Zurück zum Zitat Renaud M, Karakaya K, Sterken T, Fiorini P, Van Hoof C, Puers R (2008) Fabrication, modeling and characterization of MEMS piezoelectric vibration harvesters. Sens Actuators Phys 145–146:380–386CrossRef Renaud M, Karakaya K, Sterken T, Fiorini P, Van Hoof C, Puers R (2008) Fabrication, modeling and characterization of MEMS piezoelectric vibration harvesters. Sens Actuators Phys 145–146:380–386CrossRef
Zurück zum Zitat Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142CrossRef Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142CrossRef
Zurück zum Zitat Roundy S, Wirght PK, Rabaey JM (2003a) Energy scavenging for wireless sensor networks, 1st edn. Kluwer academic, BostonCrossRef Roundy S, Wirght PK, Rabaey JM (2003a) Energy scavenging for wireless sensor networks, 1st edn. Kluwer academic, BostonCrossRef
Zurück zum Zitat Roundy S, Wright PK, Rabaey J (2003b) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef Roundy S, Wright PK, Rabaey J (2003b) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef
Zurück zum Zitat Saadon S, Sidek O (2001) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manage 52:500–504CrossRef Saadon S, Sidek O (2001) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manage 52:500–504CrossRef
Zurück zum Zitat Sari I, Balkan T, Kulah H (2008) An electromagnetic micro power generator for wideband environmental vibrations. Sens Actuators Phys 145–146:405–413CrossRef Sari I, Balkan T, Kulah H (2008) An electromagnetic micro power generator for wideband environmental vibrations. Sens Actuators Phys 145–146:405–413CrossRef
Zurück zum Zitat Sari I, Balkan T, Kulah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency up conversion technique. J Microelectromech Syst 19:14–27CrossRef Sari I, Balkan T, Kulah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency up conversion technique. J Microelectromech Syst 19:14–27CrossRef
Zurück zum Zitat Shen D, Park J-H, Noh JH, Choe S-Y, Kim S-H, Wikle HC III, Kim D-J (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens Actuators Phys 154:103–108CrossRef Shen D, Park J-H, Noh JH, Choe S-Y, Kim S-H, Wikle HC III, Kim D-J (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens Actuators Phys 154:103–108CrossRef
Zurück zum Zitat Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2008) A wideband vibration-based energy harvester. J Micromech Microeng 18:115021CrossRef Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2008) A wideband vibration-based energy harvester. J Micromech Microeng 18:115021CrossRef
Zurück zum Zitat Starner T, Paradiso JA (2004) Human generated power for mobile electronics. In: Piquet C (ed) Low-power electronics design. CRC Press, Boca Raton pp 1–35 Starner T, Paradiso JA (2004) Human generated power for mobile electronics. In: Piquet C (ed) Low-power electronics design. CRC Press, Boca Raton pp 1–35
Zurück zum Zitat Tadigadapa S, Mateti K (2009) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20:092001CrossRef Tadigadapa S, Mateti K (2009) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20:092001CrossRef
Zurück zum Zitat Tvedt LGW, Nguyen DS, Halvorsen E (2010) Nonlinear behavior of an electrostatic energy harvester under wide- and narrowband excitation. J Microelectromech Syst 19:305–316CrossRef Tvedt LGW, Nguyen DS, Halvorsen E (2010) Nonlinear behavior of an electrostatic energy harvester under wide- and narrowband excitation. J Microelectromech Syst 19:305–316CrossRef
Zurück zum Zitat Wacharasindhu T, Kwon JW (2008) A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. J Micromech Microeng 18:104016CrossRef Wacharasindhu T, Kwon JW (2008) A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. J Micromech Microeng 18:104016CrossRef
Zurück zum Zitat Wu X, Lin J, Kato S, Zhang K, Ren T, Liu L (2008) A frequency adjustable vibration energy harvester. In: Proceedings of PowerMEMS 2008 + microEMS 2008, pp 245–248 Wu X, Lin J, Kato S, Zhang K, Ren T, Liu L (2008) A frequency adjustable vibration energy harvester. In: Proceedings of PowerMEMS 2008 + microEMS 2008, pp 245–248
Zurück zum Zitat Xue H, Hu Y, Wang QM (2008) Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans Ultrason Ferroelectr Freq Control 55:2104–2108CrossRef Xue H, Hu Y, Wang QM (2008) Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans Ultrason Ferroelectr Freq Control 55:2104–2108CrossRef
Zurück zum Zitat Yang B, Lee C (2010) Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. Microsyst Technol 16:961–966CrossRef Yang B, Lee C (2010) Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. Microsyst Technol 16:961–966CrossRef
Zurück zum Zitat Yang B, Lee C, Kee WL, Lim SP (2010) Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J Micro/Nanolith MEMS MOEMS 9:023002CrossRef Yang B, Lee C, Kee WL, Lim SP (2010) Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J Micro/Nanolith MEMS MOEMS 9:023002CrossRef
Zurück zum Zitat Zhu D, Roberts S, Tudor MJ, Beeby SP (2010) Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sens Actuators Phys 158:284–293CrossRef Zhu D, Roberts S, Tudor MJ, Beeby SP (2010) Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sens Actuators Phys 158:284–293CrossRef
Metadaten
Titel
A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz
verfasst von
Huicong Liu
Chengkuo Lee
Takeshi Kobayashi
Cho Jui Tay
Chenggen Quan
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 4/2012
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-012-1424-1

Weitere Artikel der Ausgabe 4/2012

Microsystem Technologies 4/2012 Zur Ausgabe

Neuer Inhalt