Skip to main content
Erschienen in: Microsystem Technologies 1/2014

01.01.2014 | Technical Paper

Electro-thermal analysis of an embedded boron diffused microheater for thruster applications

verfasst von: Pijus Kundu, Tarun Kanti Bhattacharyya, Soumen Das

Erschienen in: Microsystem Technologies | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the important design criteria of micropropulsion systems in particular VLM is the type of microheater, its layout and placement with a view to achieve uniform heating of propellant, fast heat transfer efficiency with minimum input power. Thrust produced by microthruster not only depends on the structural geometry of the thruster and propellant flow rate, but also on the chamber temperature to produce super saturated dry stream at the exit nozzle. Detailed design of microheater in thermal and electrical domains using co-solvers available in MEMS software tools along with material’s thermal property, temperature dependence of electrical resistivity and thermal conductivity have been considered in the present work to achieve precise modeling and experimental accuracy of heater operation. The chamber temperature was analytically calculated and subsequently the required resistance and power were estimated. The boron diffused microheaters of meanderline configuration in silicon substrate has been designed and its finite element based electro-thermal modeling was employed to predict the heater characteristics. The variation of microheater temperature with time, applied voltage and along chamber length has been determined from the modeling. Subsequently the designed microheater was realized on silicon wafer by lithography and boron diffusion process and its detailed testing was evaluated. It was found that boron diffused resistor of 820 Ω can generate 405 K temperature with applied input power 2.4 W. Finally the simulated results were validated by experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baroncini M, Placidi P, Cardinali GC, Scorzoni A (2004) Thermal characterization of a microheater for micromachined gas sensors. Sens Actuators A 115:8–14CrossRef Baroncini M, Placidi P, Cardinali GC, Scorzoni A (2004) Thermal characterization of a microheater for micromachined gas sensors. Sens Actuators A 115:8–14CrossRef
Zurück zum Zitat Briand D, Krauss A, Van der Schoot B, Weimar U, Barsan N, Göpel W, De Rooij NF (2000) Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors. Sens Actuators B 68:223–233CrossRef Briand D, Krauss A, Van der Schoot B, Weimar U, Barsan N, Göpel W, De Rooij NF (2000) Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors. Sens Actuators B 68:223–233CrossRef
Zurück zum Zitat Fung SKH, Tang Z, Chan PCH, Sin JKO, Cheung PW (1996) Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications. Sen Actuators A 54:482–487CrossRef Fung SKH, Tang Z, Chan PCH, Sin JKO, Cheung PW (1996) Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications. Sen Actuators A 54:482–487CrossRef
Zurück zum Zitat Gajda MA, Ahmed H (1995) Applications of thermal silicon sensors on membranes. Sens Actuators A 49:1–9CrossRef Gajda MA, Ahmed H (1995) Applications of thermal silicon sensors on membranes. Sens Actuators A 49:1–9CrossRef
Zurück zum Zitat Glod S, Poulikakos D, Zhao Z, Yadigaroglu G (2002) An investigation of microscale explosive vaporization of water on an ultra-thin Pt wire. Int J Heat Mass Transf 45:367–379CrossRef Glod S, Poulikakos D, Zhao Z, Yadigaroglu G (2002) An investigation of microscale explosive vaporization of water on an ultra-thin Pt wire. Int J Heat Mass Transf 45:367–379CrossRef
Zurück zum Zitat Iida Y, Okuyama K (1994) Boiling nucleation on a very small film heater subjected to extremely rapid heating. Int J Heat Mass Transf 37:2771–2780CrossRef Iida Y, Okuyama K (1994) Boiling nucleation on a very small film heater subjected to extremely rapid heating. Int J Heat Mass Transf 37:2771–2780CrossRef
Zurück zum Zitat Kundu P, Bhattacharyya TK, Das S (2012) Design, fabrication and performance evaluation of a vaporizing liquid microthruster. J Micromech Microeng 22:25001–25016CrossRef Kundu P, Bhattacharyya TK, Das S (2012) Design, fabrication and performance evaluation of a vaporizing liquid microthruster. J Micromech Microeng 22:25001–25016CrossRef
Zurück zum Zitat Lewis D, Janson S, Cohen R, Antonsson E (2000) Digital micropropulsion. Sens Actuators A 80:143–154CrossRef Lewis D, Janson S, Cohen R, Antonsson E (2000) Digital micropropulsion. Sens Actuators A 80:143–154CrossRef
Zurück zum Zitat Lien KY, Lee SH, Tsai TJ (2009) A microfluidic-based system using reverse transcription polymerase chain reactions for rapid detection of aquaculture diseases. Microfluid Nanofluid 7:795–806CrossRef Lien KY, Lee SH, Tsai TJ (2009) A microfluidic-based system using reverse transcription polymerase chain reactions for rapid detection of aquaculture diseases. Microfluid Nanofluid 7:795–806CrossRef
Zurück zum Zitat Maurya DK, Das S, Lahiri SK (2005a) Silicon MEMS vaporizing liquid microthruster with internal microheater. J Micromech Microeng 15:966–970CrossRef Maurya DK, Das S, Lahiri SK (2005a) Silicon MEMS vaporizing liquid microthruster with internal microheater. J Micromech Microeng 15:966–970CrossRef
Zurück zum Zitat Maurya DK, Das S, Lahiri SK (2005b) An analytical model of a silicon MEMS vaporizing liquid microthruster and some experimental studies. Sens Actuators A 122:159–166CrossRef Maurya DK, Das S, Lahiri SK (2005b) An analytical model of a silicon MEMS vaporizing liquid microthruster and some experimental studies. Sens Actuators A 122:159–166CrossRef
Zurück zum Zitat Mueller J, Tang W C, Wallace AP, Li W, Bame D, Chakraborty I, Lawton R (1997) Design analysis and fabrication of a vaporizing liquid microthruster, AIAA 97–3054:33rd Joint Propulsion Conf. (Seattle, WA) Mueller J, Tang W C, Wallace AP, Li W, Bame D, Chakraborty I, Lawton R (1997) Design analysis and fabrication of a vaporizing liquid microthruster, AIAA 97–3054:33rd Joint Propulsion Conf. (Seattle, WA)
Zurück zum Zitat Mukerjee EV, Wallace AP, Yan KY, Howard DW, Smith RL, Collins SD (2000) Vaporizing liquid microthruster. Sens Actuators A 83:231–236CrossRef Mukerjee EV, Wallace AP, Yan KY, Howard DW, Smith RL, Collins SD (2000) Vaporizing liquid microthruster. Sens Actuators A 83:231–236CrossRef
Zurück zum Zitat Puigcorbe J, Vogel D, Michel B, Vila A, Gracia I, Cane C, Morante JR (2003) Thermal and mechanical analysis of micromachined gas sensors. J Micromech Microeng 13:548–556CrossRef Puigcorbe J, Vogel D, Michel B, Vila A, Gracia I, Cane C, Morante JR (2003) Thermal and mechanical analysis of micromachined gas sensors. J Micromech Microeng 13:548–556CrossRef
Zurück zum Zitat Robert LB, Kenneth SB (2001) Analysis and testing of a silicon intrinsic-point heater in a micropropulsion application. Sens Actuators A 91:249–255CrossRef Robert LB, Kenneth SB (2001) Analysis and testing of a silicon intrinsic-point heater in a micropropulsion application. Sens Actuators A 91:249–255CrossRef
Zurück zum Zitat Rossi C, Scheid E, Esteve D (1997) Theoretical and experimental study of silicon micromachined microheater with dielectric stacked membranes. Sens Actuators A 63:183–189CrossRef Rossi C, Scheid E, Esteve D (1997) Theoretical and experimental study of silicon micromachined microheater with dielectric stacked membranes. Sens Actuators A 63:183–189CrossRef
Zurück zum Zitat Wang YH, Lee CY, Chiang CM (2007) A MEMS-based air flow sensor with a free-standing micro cantilever structure. Sensors 7:2389–2401CrossRef Wang YH, Lee CY, Chiang CM (2007) A MEMS-based air flow sensor with a free-standing micro cantilever structure. Sensors 7:2389–2401CrossRef
Zurück zum Zitat Wang YH, Chen CP, Chang CM, Lin CP, Lin CH, Fu LM, Lee CY (2009) MEMS-based gas flow sensors. Microfluid Nanofluid 6:333–346CrossRef Wang YH, Chen CP, Chang CM, Lin CP, Lin CH, Fu LM, Lee CY (2009) MEMS-based gas flow sensors. Microfluid Nanofluid 6:333–346CrossRef
Zurück zum Zitat Xua Y, Chiub CW, Jiangb F, Linc Q, Taid YC (2005) A MEMS multi-sensor chip for gas flow sensing. Sens Actuators A 121:253–261CrossRef Xua Y, Chiub CW, Jiangb F, Linc Q, Taid YC (2005) A MEMS multi-sensor chip for gas flow sensing. Sens Actuators A 121:253–261CrossRef
Zurück zum Zitat Ye XY, Tang F, Ding HQ, Zhou ZY (2001) Study of a vaporizing water microthruster. Sens Actuators A 89:159–165CrossRef Ye XY, Tang F, Ding HQ, Zhou ZY (2001) Study of a vaporizing water microthruster. Sens Actuators A 89:159–165CrossRef
Zurück zum Zitat Zhang KL, Chou SK, Ang SS, Tang XS (2005) A MEMS-based solid propellant microthruster with Au/Ti microheater. Sens Actuators A 122:113–123CrossRef Zhang KL, Chou SK, Ang SS, Tang XS (2005) A MEMS-based solid propellant microthruster with Au/Ti microheater. Sens Actuators A 122:113–123CrossRef
Metadaten
Titel
Electro-thermal analysis of an embedded boron diffused microheater for thruster applications
verfasst von
Pijus Kundu
Tarun Kanti Bhattacharyya
Soumen Das
Publikationsdatum
01.01.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2014
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-013-1759-2

Weitere Artikel der Ausgabe 1/2014

Microsystem Technologies 1/2014 Zur Ausgabe

Neuer Inhalt