Skip to main content
Erschienen in: Microsystem Technologies 4/2015

01.04.2015 | Technical Paper

A novel piezo-driven microgripper with a large jaw displacement

verfasst von: Xiantao Sun, Weihai Chen, Sergej Fatikow, Yanling Tian, Rui Zhou, Jianbin Zhang, Manuel Mikczinski

Erschienen in: Microsystem Technologies | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a novel piezo-driven microgripper for micromanipulation. A two-grade amplification mechanism is introduced to enlarge the jaw displacement of the microgripper driven by a piezoelectric actuator (PEA). The design adopts a hybrid flexure structure that integrates flexure hinge and flexure beam to combine their advantages to further improve the microgripper performance. The mechanical designs of two microgrippers with different output manners are first described, one of which is selected to conduct the detailed modeling and analysis. Subsequently, the finite element analysis (FEA) is performed to verify the microgripper performance and the effectiveness of the established models for the investigation of optimum structure parameters. Finally, after the prototype is fabricated, the experimental results show that the developed microgripper possesses the high-precision grasping capacity for different shaped and sized microobjects. Moreover, a large jaw displacement of 150.8 μm corresponding to the 100 V drive voltage and a high amplification ratio of 16.4 can be obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bassan HS, Patel RV, Moallem M (2009) A novel manipulator for percutaneous needle insertion: design and experimentation. IEEE/ASME Trans Mechatron 14:746–761CrossRef Bassan HS, Patel RV, Moallem M (2009) A novel manipulator for percutaneous needle insertion: design and experimentation. IEEE/ASME Trans Mechatron 14:746–761CrossRef
Zurück zum Zitat Butefisch S, Seidemann V, Buttgenbach S (2002) Novel micro-pneumatic actuator for MEMS. Sens Actuator A Phys 97–98:638–645CrossRef Butefisch S, Seidemann V, Buttgenbach S (2002) Novel micro-pneumatic actuator for MEMS. Sens Actuator A Phys 97–98:638–645CrossRef
Zurück zum Zitat Chang H, Zhao H, Ye F, Yuan G, Xie J, Kraft M, Yuan W (2014) A rotary comb-actuated microgripper with a large displacement range. Microsyst Technol 20:119–126CrossRef Chang H, Zhao H, Ye F, Yuan G, Xie J, Kraft M, Yuan W (2014) A rotary comb-actuated microgripper with a large displacement range. Microsyst Technol 20:119–126CrossRef
Zurück zum Zitat Chen WJ, Lin W (2008) Fiber assembly of MEMS optical switches with U-groove channels. IEEE Trans Automat Sci Eng 5:207–215CrossRef Chen WJ, Lin W (2008) Fiber assembly of MEMS optical switches with U-groove channels. IEEE Trans Automat Sci Eng 5:207–215CrossRef
Zurück zum Zitat Chen T, Chen L, Sun L, Li X (2009) Design and fabrication of a four-arm-structure MEMS gripper. IEEE Trans Ind Electron 56:996–1004CrossRef Chen T, Chen L, Sun L, Li X (2009) Design and fabrication of a four-arm-structure MEMS gripper. IEEE Trans Ind Electron 56:996–1004CrossRef
Zurück zum Zitat Choi KB, Kim DH (2006) Monolithic parallel linear compliant mechanism for two axes ultraprecision linear motion. Rev Sci Instrum 77:065106CrossRef Choi KB, Kim DH (2006) Monolithic parallel linear compliant mechanism for two axes ultraprecision linear motion. Rev Sci Instrum 77:065106CrossRef
Zurück zum Zitat Howell LL (2001) Compliant mechanism. Wiley, New York Howell LL (2001) Compliant mechanism. Wiley, New York
Zurück zum Zitat Kim DH, Lee MG, Kim B, Sun Y (2005) A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater Struct 14:1265–1272CrossRef Kim DH, Lee MG, Kim B, Sun Y (2005) A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater Struct 14:1265–1272CrossRef
Zurück zum Zitat Kim K, Liu X, Zhang Y, Sun Y (2008) Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J Micromech Microeng 18:055013CrossRef Kim K, Liu X, Zhang Y, Sun Y (2008) Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J Micromech Microeng 18:055013CrossRef
Zurück zum Zitat Kim BS, Park JS, Kang BH, Moon C (2012a) Fabrication and property analysis of a MEMS micro-gripper for robotic micro-manipulation. Bobot Com Int Manuf 28:50–56CrossRef Kim BS, Park JS, Kang BH, Moon C (2012a) Fabrication and property analysis of a MEMS micro-gripper for robotic micro-manipulation. Bobot Com Int Manuf 28:50–56CrossRef
Zurück zum Zitat Kim K, Ahn D, Gweon D (2012b) Optimal design of a 1-rotational DOF flexure joint of a 3-DOF H-type stage. Mechatronics 22:24–32CrossRef Kim K, Ahn D, Gweon D (2012b) Optimal design of a 1-rotational DOF flexure joint of a 3-DOF H-type stage. Mechatronics 22:24–32CrossRef
Zurück zum Zitat Li Y, Xu Q (2009) Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE Trans Robot 25:645–657CrossRef Li Y, Xu Q (2009) Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE Trans Robot 25:645–657CrossRef
Zurück zum Zitat Nah SK, Zhong ZW (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sensor Actuator A Phys 133:218–224CrossRef Nah SK, Zhong ZW (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sensor Actuator A Phys 133:218–224CrossRef
Zurück zum Zitat Ouyang PR, Zhang WJ, Gupta MM, Zhao W (2007) Overview of the development of a visual based automated bio-micromanipulation system. Mechatronics 17:578–588CrossRef Ouyang PR, Zhang WJ, Gupta MM, Zhao W (2007) Overview of the development of a visual based automated bio-micromanipulation system. Mechatronics 17:578–588CrossRef
Zurück zum Zitat Paros JM, Weisbord L (1965) How to design flexure hinges. Mach Des 37:151–156 Paros JM, Weisbord L (1965) How to design flexure hinges. Mach Des 37:151–156
Zurück zum Zitat Raghavendra MRA, Kumar AS, Jagdish BN (2010) Design and analysis of flexure-based parameter in microgripper. Int J Adv Manuf Technol 49:1185–1193CrossRef Raghavendra MRA, Kumar AS, Jagdish BN (2010) Design and analysis of flexure-based parameter in microgripper. Int J Adv Manuf Technol 49:1185–1193CrossRef
Zurück zum Zitat Sun X, Chen W, Zhou R, Chen W, Zhang J (2013) A force-decoupled compound parallel alignment stage for nanoimprint lithography. Rev Sci Instrum 84:125002CrossRef Sun X, Chen W, Zhou R, Chen W, Zhang J (2013) A force-decoupled compound parallel alignment stage for nanoimprint lithography. Rev Sci Instrum 84:125002CrossRef
Zurück zum Zitat Tang X, Chen I, Li Q (2006) Design and nonlinear modeling of a large-displacement XYZ flexure parallel mechanism with decoupled kinematic structure. Rev Sci Instrum 77:115101CrossRef Tang X, Chen I, Li Q (2006) Design and nonlinear modeling of a large-displacement XYZ flexure parallel mechanism with decoupled kinematic structure. Rev Sci Instrum 77:115101CrossRef
Zurück zum Zitat Tian Y, Shirinzadeh B, Zhang D (2009) A flexure-based mechanism and control methodology for ultra-precision turning operation. Precis Eng 33:160–166CrossRef Tian Y, Shirinzadeh B, Zhang D (2009) A flexure-based mechanism and control methodology for ultra-precision turning operation. Precis Eng 33:160–166CrossRef
Zurück zum Zitat Tian Y, Shirinzadeh B, Zhang D (2010) Design and dynamics of a 3-DOF flexure-based parallel mechanism for micro/nano manipulation. Microelectron Eng 87:230–241CrossRef Tian Y, Shirinzadeh B, Zhang D (2010) Design and dynamics of a 3-DOF flexure-based parallel mechanism for micro/nano manipulation. Microelectron Eng 87:230–241CrossRef
Zurück zum Zitat Tsui K, Geisberger AA, Ellis M, Skidmore GD (2004) Micromachined end-effector and techniques for directed MEMS assembly. J Micromech Microeng 14:542–549CrossRef Tsui K, Geisberger AA, Ellis M, Skidmore GD (2004) Micromachined end-effector and techniques for directed MEMS assembly. J Micromech Microeng 14:542–549CrossRef
Zurück zum Zitat Volland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectron Eng 61–62:1015–1023CrossRef Volland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectron Eng 61–62:1015–1023CrossRef
Zurück zum Zitat Zesch W, Brunner M, Weber A (1997) Vacuum tool for handling microobjects with a nanorobot. In: IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico, pp 1761–1766 Zesch W, Brunner M, Weber A (1997) Vacuum tool for handling microobjects with a nanorobot. In: IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico, pp 1761–1766
Zurück zum Zitat Zhang Y, Chen BK, Liu X, Sun Y (2010) Autonomous robotic pick-and-place of microobjects. IEEE Trans Robot 26:200–207CrossRefMATH Zhang Y, Chen BK, Liu X, Sun Y (2010) Autonomous robotic pick-and-place of microobjects. IEEE Trans Robot 26:200–207CrossRefMATH
Zurück zum Zitat Zhang R, Chu J, Wang H, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst Technol 19:89–97CrossRef Zhang R, Chu J, Wang H, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst Technol 19:89–97CrossRef
Zurück zum Zitat Zhong ZW, Yeong CK (2006) Development of a gripper using SMA wire. Sensor Actuator A Phys 126:375–381CrossRef Zhong ZW, Yeong CK (2006) Development of a gripper using SMA wire. Sensor Actuator A Phys 126:375–381CrossRef
Zurück zum Zitat Zubir MNM, Shirinzadeh B (2009) Development of a high precision flexure-based microgripper. Precis Eng 33:362–370CrossRef Zubir MNM, Shirinzadeh B (2009) Development of a high precision flexure-based microgripper. Precis Eng 33:362–370CrossRef
Zurück zum Zitat Zubir MNM, Shirinzadeh B, Tian Y (2009) A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mech Mach Theory 44:2248–2264CrossRefMATH Zubir MNM, Shirinzadeh B, Tian Y (2009) A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mech Mach Theory 44:2248–2264CrossRefMATH
Metadaten
Titel
A novel piezo-driven microgripper with a large jaw displacement
verfasst von
Xiantao Sun
Weihai Chen
Sergej Fatikow
Yanling Tian
Rui Zhou
Jianbin Zhang
Manuel Mikczinski
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 4/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2199-3

Weitere Artikel der Ausgabe 4/2015

Microsystem Technologies 4/2015 Zur Ausgabe

Neuer Inhalt