Skip to main content
Erschienen in: Microsystem Technologies 7/2016

29.02.2016 | Technical Paper

The MEMS four-leaf clover wideband vibration energy harvesting device: design concept and experimental verification

verfasst von: J. Iannacci, G. Sordo, E. Serra, U. Schmid

Erschienen in: Microsystem Technologies | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this contribution, we discuss a novel design concept of a high-performance wideband MEMS vibration energy harvester (EH), named four-leaf clover (FLC EH-MEMS) after its circular shape featuring four petal-like mass-spring systems. The goal is to enable multiple resonant modes in the typical range of vibrations scattered in the environment (i.e., up to 4–5 kHz). This boosts the FLC conversion capability from mechanical into electrical energy exploiting the piezoelectric effect, thus overcoming the common limitation of cantilever-like EHs that exhibit good performance only in a very narrow band of vibration (i.e., fundamental resonant mode). The FLC concept is first discussed framing it into the current state of the art, highlighting its strengths. Then, after a brief theoretical introduction on mechanical resonators, the FLC EH-MEMS device is described in details. Finite Element Method (FEM) analyses are conducted in the ANSYS Workbench™ framework. A suitable 3D model is built up to perform modal simulations, aimed to identify mechanical resonant modes, as well as harmonic analyses, devoted to study the mechanical and electrical behaviour of the FLC EH-MEMS (coupled field analysis). The work reports on experimental activities, as well. Physical samples of the FLC EH-MEMS device are fabricated within a technology platform that combines surface and bulk micromachining. Thereafter, specimens are tested both with a laser doppler vibrometer measurement setup as well as with a dedicated shaker-based setup, and the results are compared with simulations for validation purposes. In conclusion, the FLC EH-MEMS exhibits a large number of resonant modes scattered in the tested range of vibrations (up to 15 kHz) already starting from frequencies as low as 200 Hz, and expected levels of converted power better than 10 µW.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ababneh A, Schmid U, Hernando J, Sánchez-Rojas JL, Seidel H (2010) The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films. Mater Sci Eng B 172:253–258CrossRef Ababneh A, Schmid U, Hernando J, Sánchez-Rojas JL, Seidel H (2010) The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films. Mater Sci Eng B 172:253–258CrossRef
Zurück zum Zitat Akiyama M, Kano K, Teshigahara A (2009) Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl Phys Lett 95:1–3CrossRef Akiyama M, Kano K, Teshigahara A (2009) Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl Phys Lett 95:1–3CrossRef
Zurück zum Zitat Beeby S, White N (eds) (2010) Energy harvesting for autonomous systems. Artech House, London Beeby S, White N (eds) (2010) Energy harvesting for autonomous systems. Artech House, London
Zurück zum Zitat Beigelbeck R, Schneider M, Schalko J, Bittner A, Schmid U (2014) A two-step load-deflection procedure applicable to extract the Young’s modulus and the residual tensile stress of circularly shaped thin-film diaphragms. J Appl Phys 116:1–13CrossRef Beigelbeck R, Schneider M, Schalko J, Bittner A, Schmid U (2014) A two-step load-deflection procedure applicable to extract the Young’s modulus and the residual tensile stress of circularly shaped thin-film diaphragms. J Appl Phys 116:1–13CrossRef
Zurück zum Zitat Brennen RA, Pisano AP, Tang WC (1990) Multiple mode micromechanical resonators. In: Proceedings of IEEE MEMS, pp 9–14 Brennen RA, Pisano AP, Tang WC (1990) Multiple mode micromechanical resonators. In: Proceedings of IEEE MEMS, pp 9–14
Zurück zum Zitat Casset F, Durand C, Dedieu S, Carpentier JF, Gonchond JP, Ancey P, Robert P (2009) 3D multi-frequency MEMS electromechanical resonator design. In: Proceedings of EuroSimE, pp 1–5 Casset F, Durand C, Dedieu S, Carpentier JF, Gonchond JP, Ancey P, Robert P (2009) 3D multi-frequency MEMS electromechanical resonator design. In: Proceedings of EuroSimE, pp 1–5
Zurück zum Zitat Chamanian S, Bahrami M, Zangabad RP, Khodaei M, Zarbakhsh P (2012) Wideband capacitive energy harvester based on mechanical frequency-up conversion. In: Proceedings of IEEE SAS, pp 1–4 Chamanian S, Bahrami M, Zangabad RP, Khodaei M, Zarbakhsh P (2012) Wideband capacitive energy harvester based on mechanical frequency-up conversion. In: Proceedings of IEEE SAS, pp 1–4
Zurück zum Zitat Chandrahalim H, Bhave SA (2008) Digitally-tunable mems filter using mechanically-coupled resonator array. In: Proceedings of IEEE MEMS, pp 1020–1023 Chandrahalim H, Bhave SA (2008) Digitally-tunable mems filter using mechanically-coupled resonator array. In: Proceedings of IEEE MEMS, pp 1020–1023
Zurück zum Zitat Chidambaram N, Mazzalai A, Muralt P (2012) Comparison of lead zirconate titanate (PZT) thin films for MEMS energy harvester with interdigitated and parallel plate electrodes. In: Proceedings of ISAF/ECAPD/PFM, pp 1–4 Chidambaram N, Mazzalai A, Muralt P (2012) Comparison of lead zirconate titanate (PZT) thin films for MEMS energy harvester with interdigitated and parallel plate electrodes. In: Proceedings of ISAF/ECAPD/PFM, pp 1–4
Zurück zum Zitat Chidambaram N, Mazzalai A, Balma D, Muralt P (2013) Comparison of lead zirconate titanate thin films for microelectromechanical energy harvester with interdigitated and parallel plate electrodes. IEEE Trans Ultrason Ferroelectr Freq Control 60:1564–1571CrossRef Chidambaram N, Mazzalai A, Balma D, Muralt P (2013) Comparison of lead zirconate titanate thin films for microelectromechanical energy harvester with interdigitated and parallel plate electrodes. IEEE Trans Ultrason Ferroelectr Freq Control 60:1564–1571CrossRef
Zurück zum Zitat Collado A, Georgiadis A (2013) Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna. IEEE Trans Circuits Syst 60:2225–2234CrossRef Collado A, Georgiadis A (2013) Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna. IEEE Trans Circuits Syst 60:2225–2234CrossRef
Zurück zum Zitat Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39:3607–3612CrossRef Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39:3607–3612CrossRef
Zurück zum Zitat Dargie W, Poellabauer C (2010) Fundamentals of wireless sensor networks: theory and practice. John Wiley and Sons, HobokenCrossRef Dargie W, Poellabauer C (2010) Fundamentals of wireless sensor networks: theory and practice. John Wiley and Sons, HobokenCrossRef
Zurück zum Zitat Dini M, Romani A, Filippi M, Bottarel V, Ricotti G, Tartagni M (2015) A nano-current power management ic for multiple heterogeneous energy harvesting sources. IEEE Trans Power Electron. doi:10.1109/TPEL.2014.2379622 Dini M, Romani A, Filippi M, Bottarel V, Ricotti G, Tartagni M (2015) A nano-current power management ic for multiple heterogeneous energy harvesting sources. IEEE Trans Power Electron. doi:10.​1109/​TPEL.​2014.​2379622
Zurück zum Zitat Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley and Sons, HobokenCrossRef Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley and Sons, HobokenCrossRef
Zurück zum Zitat Ferrari M, Ferrari V, Guizzetti M, Marioli D, Taroni A (2008) Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sens Actuators A: Phys 142:329–335 (Elsevier) CrossRef Ferrari M, Ferrari V, Guizzetti M, Marioli D, Taroni A (2008) Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sens Actuators A: Phys 142:329–335 (Elsevier) CrossRef
Zurück zum Zitat Fu JL, Nakano Y, Sorenson LD, Ayazi F (2012) Multi-axis AlN-on-silicon vibration energy harvester with integrated frequency-upconverting transducers. In: Proceedings of IEEE MEMS, pp 1269–1272 Fu JL, Nakano Y, Sorenson LD, Ayazi F (2012) Multi-axis AlN-on-silicon vibration energy harvester with integrated frequency-upconverting transducers. In: Proceedings of IEEE MEMS, pp 1269–1272
Zurück zum Zitat Galchev T, Aktakka EE, Najafi K (2012) A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. IEEE JMEMS 21:1311–1320 Galchev T, Aktakka EE, Najafi K (2012) A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. IEEE JMEMS 21:1311–1320
Zurück zum Zitat Goldschmidtboeing F, Wischke M, Eichhorn C, Woias P (2009) Nonlinear effects in piezoelectric vibration harvesters with high coupling factors. In: Proceedings of PowerMEMS, pp 364–367 Goldschmidtboeing F, Wischke M, Eichhorn C, Woias P (2009) Nonlinear effects in piezoelectric vibration harvesters with high coupling factors. In: Proceedings of PowerMEMS, pp 364–367
Zurück zum Zitat Hagiwara K, Goto M, Iguchi Y, Tajima T, Yasuno Y, Kodama H, Kidokoro K, Suzuki Y (2012) Electret charging method based on soft X-ray photoionization for MEMS transducers. IEEE Trans Dielectr Electr Insul 19:1291–1298CrossRef Hagiwara K, Goto M, Iguchi Y, Tajima T, Yasuno Y, Kodama H, Kidokoro K, Suzuki Y (2012) Electret charging method based on soft X-ray photoionization for MEMS transducers. IEEE Trans Dielectr Electr Insul 19:1291–1298CrossRef
Zurück zum Zitat Hajati A, Bathurst SP, Lee HJ, Kim SG (2011) Design and fabrication of a nonlinear resonator for ultra wide-bandwidth energy harvesting applications. In: Proceedings of IEEE MEMS, pp 1301–1304 Hajati A, Bathurst SP, Lee HJ, Kim SG (2011) Design and fabrication of a nonlinear resonator for ultra wide-bandwidth energy harvesting applications. In: Proceedings of IEEE MEMS, pp 1301–1304
Zurück zum Zitat Halvorsen E (2012) Fundamental issues in nonlinear wide-band vibration energy harvesting. APS Phys Rev E 87:1–6 Halvorsen E (2012) Fundamental issues in nonlinear wide-band vibration energy harvesting. APS Phys Rev E 87:1–6
Zurück zum Zitat Iannacci J, Sordo G (2016) Up-scaled macro-device implementation of a MEMS wideband vibration piezoelectric energy harvester design concept. Springer Microsystem Technologies XX:1–13. doi:10.1007/s00542-015-2794-y Iannacci J, Sordo G (2016) Up-scaled macro-device implementation of a MEMS wideband vibration piezoelectric energy harvester design concept. Springer Microsystem Technologies XX:1–13. doi:10.​1007/​s00542-015-2794-y
Zurück zum Zitat Iannacci J, Serra E, Di Criscienzo R, Sordo G, Gottardi M, Borrielli A, Bonaldi M, Kuenzig T, Schrag G, Pandraud G, Sarro PM (2014) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. Springer Microsyst Technol 20:627–640CrossRef Iannacci J, Serra E, Di Criscienzo R, Sordo G, Gottardi M, Borrielli A, Bonaldi M, Kuenzig T, Schrag G, Pandraud G, Sarro PM (2014) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. Springer Microsyst Technol 20:627–640CrossRef
Zurück zum Zitat Janphuang P, Lockhart R, Briand D, de Rooij NF (2014) On the optimization and performances of a compact piezoelectric impact MEMS energy harvester. In: Proceedings of IEEE MEMS, pp 429–432 Janphuang P, Lockhart R, Briand D, de Rooij NF (2014) On the optimization and performances of a compact piezoelectric impact MEMS energy harvester. In: Proceedings of IEEE MEMS, pp 429–432
Zurück zum Zitat Kamierski TJ, Beeby S (2010) Energy harvesting systems: principles, modeling and applications. Springer, Berlin Kamierski TJ, Beeby S (2010) Energy harvesting systems: principles, modeling and applications. Springer, Berlin
Zurück zum Zitat Kim I-H, Jung H-J, Lee BM, Jang S-J (2011) Broadband energy-harvesting using a two degree-of-freedom vibrating body. Appl Phys Lett 98:1–3 Kim I-H, Jung H-J, Lee BM, Jang S-J (2011) Broadband energy-harvesting using a two degree-of-freedom vibrating body. Appl Phys Lett 98:1–3
Zurück zum Zitat Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. In: Proceedings of ISWC, pp 132–139 Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. In: Proceedings of ISWC, pp 132–139
Zurück zum Zitat Lee BS, Wu WJ, Shih W-P, Vasic D, Costa F (2007) P2E−3 power harvesting using piezoelectric MEMS generator with interdigital electrodes. In: Proceedings of IEEE Ultrasonics Symposium, pp 1598–1601 Lee BS, Wu WJ, Shih W-P, Vasic D, Costa F (2007) P2E−3 power harvesting using piezoelectric MEMS generator with interdigital electrodes. In: Proceedings of IEEE Ultrasonics Symposium, pp 1598–1601
Zurück zum Zitat Liu SW, Lye SW, Miao JM (2012) Sandwich structured electrostatic/electrets parallel-plate power generator for low acceleration and low frequency vibration energy harvesting. In: Proceedings of IEEE MEMS, pp 1277–1280 Liu SW, Lye SW, Miao JM (2012) Sandwich structured electrostatic/electrets parallel-plate power generator for low acceleration and low frequency vibration energy harvesting. In: Proceedings of IEEE MEMS, pp 1277–1280
Zurück zum Zitat Mayrhofer PM, Euchner H, Bittner A, Schmid U (2015) Circular test structure for the determination of piezoelectric constants of ScxAl1−xN thin films applying laser doppler vibrometry and FEM simulations. Sens Actuators A: Phys 222:301–308 (Elsevier) CrossRef Mayrhofer PM, Euchner H, Bittner A, Schmid U (2015) Circular test structure for the determination of piezoelectric constants of ScxAl1−xN thin films applying laser doppler vibrometry and FEM simulations. Sens Actuators A: Phys 222:301–308 (Elsevier) CrossRef
Zurück zum Zitat Miki S, Fujita T, Kotoge T, Jiang YG, Uehara M, Kanda K, Higuchi K, Maenaka K (2012) Electromagnetic energy harvester by using buried NdFeB. In: Proceedings of IEEE MEMS, pp 1221–1224 Miki S, Fujita T, Kotoge T, Jiang YG, Uehara M, Kanda K, Higuchi K, Maenaka K (2012) Electromagnetic energy harvester by using buried NdFeB. In: Proceedings of IEEE MEMS, pp 1221–1224
Zurück zum Zitat Ou Q, Chen X, Gutschmidt S, Wood A, Leigh N (2010) A two-mass cantilever beam model for vibration energy harvesting applications. In: Proceedings of IEEE Conference on Automation Science and Engineering (CASE), pp 301–306 Ou Q, Chen X, Gutschmidt S, Wood A, Leigh N (2010) A two-mass cantilever beam model for vibration energy harvesting applications. In: Proceedings of IEEE Conference on Automation Science and Engineering (CASE), pp 301–306
Zurück zum Zitat Percy S, Knight C, McGarry S, Post A, Moore T, Cavanagh K (2014) Thermal energy harvesting for application at MEMS scale. Springer, BerlinCrossRef Percy S, Knight C, McGarry S, Post A, Moore T, Cavanagh K (2014) Thermal energy harvesting for application at MEMS scale. Springer, BerlinCrossRef
Zurück zum Zitat Popovic Z, Falkenstein EA, Costinett D, Zane R (2013) Low-power far-field wireless powering for wireless sensors. Proceedings of IEEE 101:1397–1407CrossRef Popovic Z, Falkenstein EA, Costinett D, Zane R (2013) Low-power far-field wireless powering for wireless sensors. Proceedings of IEEE 101:1397–1407CrossRef
Zurück zum Zitat Prabha RD, Rincon-Mora GA, Kim S (2011) Harvesting circuits for miniaturized photovoltaic cells. In: IEEE ISCAS International Symposium, pp 309–312 Prabha RD, Rincon-Mora GA, Kim S (2011) Harvesting circuits for miniaturized photovoltaic cells. In: IEEE ISCAS International Symposium, pp 309–312
Zurück zum Zitat Qi S, Shuttleworth R, Oyadiji SO, Wright J (2010) Design of a multiresonant beam for broadband piezoelectric energy harvesting. IOP smart materials and structures 19:1–10 Qi S, Shuttleworth R, Oyadiji SO, Wright J (2010) Design of a multiresonant beam for broadband piezoelectric energy harvesting. IOP smart materials and structures 19:1–10
Zurück zum Zitat Romani A, Paganelli RP, Sangiorgi E, Tartagni M (2013) Joint modeling of piezoelectric transducers and power conversion circuits for energy harvesting applications. IEEE Sens J 13:916–925CrossRef Romani A, Paganelli RP, Sangiorgi E, Tartagni M (2013) Joint modeling of piezoelectric transducers and power conversion circuits for energy harvesting applications. IEEE Sens J 13:916–925CrossRef
Zurück zum Zitat Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, DordrechtCrossRef Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, DordrechtCrossRef
Zurück zum Zitat Sanchez-Rojas JL, Hernando J, Donoso A, Bellido JC, Manzaneque T, Ababneh A, Seidel H, Schmid U (2010) Modal optimization and filtering in piezoelectric microplate resonators. J Micromech Microeng 20:1–7CrossRef Sanchez-Rojas JL, Hernando J, Donoso A, Bellido JC, Manzaneque T, Ababneh A, Seidel H, Schmid U (2010) Modal optimization and filtering in piezoelectric microplate resonators. J Micromech Microeng 20:1–7CrossRef
Zurück zum Zitat Schneider M, Bittner A, Patocka F, Stöger-Pollach M, Halwax E, Schmid U (2012) Impact of the surface-near silicon substrate properties on the microstructure of sputter-deposited AlN thin films. Appl Phys Lett 101:1–3CrossRef Schneider M, Bittner A, Patocka F, Stöger-Pollach M, Halwax E, Schmid U (2012) Impact of the surface-near silicon substrate properties on the microstructure of sputter-deposited AlN thin films. Appl Phys Lett 101:1–3CrossRef
Zurück zum Zitat Schneider M, Bittner A, Schmid U (2014) Thickness dependence of Young’s modulus and residual stress of sputtered aluminum nitride thin films. Appl Phys Lett 105:1–4 Schneider M, Bittner A, Schmid U (2014) Thickness dependence of Young’s modulus and residual stress of sputtered aluminum nitride thin films. Appl Phys Lett 105:1–4
Zurück zum Zitat Shahruz SM (2006) Design of mechanical band-pass filters for energy scavenging. J Sound Vib 292:987–998CrossRef Shahruz SM (2006) Design of mechanical band-pass filters for energy scavenging. J Sound Vib 292:987–998CrossRef
Zurück zum Zitat Suzuki M, Matsushita N, Hirata T, Yoneya R, Onishi J, Wada T, Takahashi T, Nishida T, Yoshikawa Y, Aoyagi S (2011) Fabrication of highly dielectric nano-BaTiO3/epoxy-resin composite plate having trenches by mold casting and its application to capacitive energy harvesting. In:Proceedings of IEEE Transducers, pp 2642–2645 Suzuki M, Matsushita N, Hirata T, Yoneya R, Onishi J, Wada T, Takahashi T, Nishida T, Yoshikawa Y, Aoyagi S (2011) Fabrication of highly dielectric nano-BaTiO3/epoxy-resin composite plate having trenches by mold casting and its application to capacitive energy harvesting. In:Proceedings of IEEE Transducers, pp 2642–2645
Zurück zum Zitat Tao K, Ding G, Wang P, Yang Z, Wang Y (2012) Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. In: Proceedings of IEEE MEMS, pp 1237–1240 Tao K, Ding G, Wang P, Yang Z, Wang Y (2012) Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. In: Proceedings of IEEE MEMS, pp 1237–1240
Zurück zum Zitat Todorov G, Valtchev S, Todorov T, Ivanov I, Klaassens B (2011) Tuning techniques for kinetic MEMS energy harvesters. In: Proceedings of IEEE INTELEC, pp 1–6 Todorov G, Valtchev S, Todorov T, Ivanov I, Klaassens B (2011) Tuning techniques for kinetic MEMS energy harvesters. In: Proceedings of IEEE INTELEC, pp 1–6
Zurück zum Zitat Uckelmann D, Harrison M, Michahelles F (eds) (2011) Architecting the internet of things. Springer, Berlin Uckelmann D, Harrison M, Michahelles F (eds) (2011) Architecting the internet of things. Springer, Berlin
Zurück zum Zitat Vasseur J-P, Dunkels A (2010) Interconnecting smart objects with IP: the next internet. Morgan Kaufmann Publishers, Burlington Vasseur J-P, Dunkels A (2010) Interconnecting smart objects with IP: the next internet. Morgan Kaufmann Publishers, Burlington
Zurück zum Zitat Vullers RJM, Schaijk RV, Visser HJ, Penders J, Hoof CV (2010) Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Mag 2:29–38CrossRef Vullers RJM, Schaijk RV, Visser HJ, Penders J, Hoof CV (2010) Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Mag 2:29–38CrossRef
Zurück zum Zitat Xue H, Hu Y, Wang Q-M (2008) Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans Ultrason Ferroelectr Freq Control 55:2104–2108CrossRef Xue H, Hu Y, Wang Q-M (2008) Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans Ultrason Ferroelectr Freq Control 55:2104–2108CrossRef
Zurück zum Zitat Zhu D (2011) Vibration energy harvesting: machinery vibration, human movement and flow induced vibration, in sustainable energy harvesting technologies—past present and future. InTech, Rijeka Zhu D (2011) Vibration energy harvesting: machinery vibration, human movement and flow induced vibration, in sustainable energy harvesting technologies—past present and future. InTech, Rijeka
Zurück zum Zitat Zhu M, Worthington E, Njuguna J (2009) Coupled piezoelectric-circuit FEA to study influence of a resistive load on power output of piezoelectric energy devices. Proc SPIE Smart Sens Actuators, MEMS IV 7326:1–12 Zhu M, Worthington E, Njuguna J (2009) Coupled piezoelectric-circuit FEA to study influence of a resistive load on power output of piezoelectric energy devices. Proc SPIE Smart Sens Actuators, MEMS IV 7326:1–12
Zurück zum Zitat Zorlu O, Topal ET, Külah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRef Zorlu O, Topal ET, Külah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRef
Zurück zum Zitat Zukauskaite A, Wingqvist G, Palisaitis J, Jensen J, Persson Per OÅ, Matloub R, Muralt P, Kim Y, Birch J, Hultman L (2012) Microstructure and dielectric properties of piezoelectric magnetron sputtered w ScxAl1 xN thin films. J Appl Phys 111:1–7CrossRef Zukauskaite A, Wingqvist G, Palisaitis J, Jensen J, Persson Per OÅ, Matloub R, Muralt P, Kim Y, Birch J, Hultman L (2012) Microstructure and dielectric properties of piezoelectric magnetron sputtered w ScxAl1 xN thin films. J Appl Phys 111:1–7CrossRef
Metadaten
Titel
The MEMS four-leaf clover wideband vibration energy harvesting device: design concept and experimental verification
verfasst von
J. Iannacci
G. Sordo
E. Serra
U. Schmid
Publikationsdatum
29.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-2886-3

Weitere Artikel der Ausgabe 7/2016

Microsystem Technologies 7/2016 Zur Ausgabe

Neuer Inhalt