Skip to main content
Erschienen in: Microsystem Technologies 4/2017

08.09.2016 | Review Paper

Screen Printed Graphite Nanoplatelet and Nanoparticle Composites for Thermal Interface Materials Application

verfasst von: Tien-Chan Chang, Yiin-Kuen Fuh, Sheng-Xun Tu

Erschienen in: Microsystem Technologies | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Screen printed thermal grease of embedded nanoparticles (NPs) on top of graphite nanoplatelets (GNPs) composites are fabricated with pre-defined mesh patterns as a new generation of Thermal interface materials (TIM). In the present study, the NPs thermal grease can be uniformly deposited and reliably controlled thickness in 45 μm in the matrix GNPs. Furthermore, three types of TIM are tested based on the hybridization of GNPs and the nanoparticles (NPs) thermal grease. The hybrid materials are fabricated via screen printing process to ensure the conformal uniformity of NPs thermal grease spreading on the GNPs. The performance of fabricated materials such as temperature, applied pressure, heat flux, and TIM thickness are concurrently tested in the heat flux values in the range of 0–5.3 W cm−2 and the pressure range 0–5.6 kgf/cm2 using a standard TIM tester. The steady-state heat flow technique of ASTM D5470-06 are fully adopted. The measured thermal conductivity of GNPs (3 layers) +NPs (2 layers) composite of a thickness of 195 μm is 0.2 W/m K, compared favorably with the sample of only one layer GNPs (0.11 W/m K). Experimentally, the measured trend in the change of specific thermal conductivity with pressure was in good agreement with the data presented in the literature. In the actual implementation of insulated gate bipolar transistors (IGBT) for 15 kW inverter system used for the renewable energy (solar and wind power), the fabricated composite with GNPs (3 layers) and NPs (2 layers) can effectively reduce the peak temperature of IGBT chip and is very promising in preventing thermally-related failure for the IGBT.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahn BY, Duoss EB, Motala MJ, Guo X, Park SI, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593CrossRef Ahn BY, Duoss EB, Motala MJ, Guo X, Park SI, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593CrossRef
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Eklund PC, Chung DDL (1977) Lattice vibrations in graphite and intercalation compounds of graphite. Mater Sci Eng 31:141–152CrossRef Dresselhaus MS, Dresselhaus G, Eklund PC, Chung DDL (1977) Lattice vibrations in graphite and intercalation compounds of graphite. Mater Sci Eng 31:141–152CrossRef
Zurück zum Zitat Faddoul R, Bruas NR, Blayo A (2012) Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications. Mater Sci Eng 177:1053–1066CrossRef Faddoul R, Bruas NR, Blayo A (2012) Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications. Mater Sci Eng 177:1053–1066CrossRef
Zurück zum Zitat Fukushima H, Fukushima LT, Rook BP, Rich MJ (2006) Thermal conductivity ofexfoliated graphite nanocomposites. J Therm Anal Calorim 85:235–238CrossRef Fukushima H, Fukushima LT, Rook BP, Rich MJ (2006) Thermal conductivity ofexfoliated graphite nanocomposites. J Therm Anal Calorim 85:235–238CrossRef
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
Zurück zum Zitat Green MA (2011) Ag requirements for silicon wafer-based solar cells. Prog Photovolt Res Appl 19:911–916CrossRef Green MA (2011) Ag requirements for silicon wafer-based solar cells. Prog Photovolt Res Appl 19:911–916CrossRef
Zurück zum Zitat Huang ZG, Chen ZY (2011) “Analysis of heat dissipation in led with various adhesives. J Thermal Sci 20:254CrossRef Huang ZG, Chen ZY (2011) “Analysis of heat dissipation in led with various adhesives. J Thermal Sci 20:254CrossRef
Zurück zum Zitat Hui Y, Liangliang L, Yujun Z (2012) Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scripta Mater 66:931–934CrossRef Hui Y, Liangliang L, Yujun Z (2012) Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scripta Mater 66:931–934CrossRef
Zurück zum Zitat Kempers R, Kolodner P, Lyons A, Robinson AJ (2009) A high-precision apparatu for the characterization of thermal interface materials. Rev Sci Instrum 80:095111CrossRef Kempers R, Kolodner P, Lyons A, Robinson AJ (2009) A high-precision apparatu for the characterization of thermal interface materials. Rev Sci Instrum 80:095111CrossRef
Zurück zum Zitat Lu D, Wong CP, Prasher R, Chiu CP (2009) Materials for advanced packaging. Springer, New York, pp 437–458CrossRef Lu D, Wong CP, Prasher R, Chiu CP (2009) Materials for advanced packaging. Springer, New York, pp 437–458CrossRef
Zurück zum Zitat Mahajan R, Chiu CP, Chrysler G (2006) Cooling a microprocessor chip. Proc IEEE 94:1476–1486CrossRef Mahajan R, Chiu CP, Chrysler G (2006) Cooling a microprocessor chip. Proc IEEE 94:1476–1486CrossRef
Zurück zum Zitat Meysenc L, Jylhakallio M, Barbosa P (2005) Power electronics cooling effectiveness versus thermal inertia. IEEE T Power Electr 20:687–693CrossRef Meysenc L, Jylhakallio M, Barbosa P (2005) Power electronics cooling effectiveness versus thermal inertia. IEEE T Power Electr 20:687–693CrossRef
Zurück zum Zitat Park W, Guo Y, Li X, Hu J, Liu L, Ruan X, Chen YP (2015) High-performance thermal interface material based on few-layer graphene composite. J Phys Chem C 119:26753–26759CrossRef Park W, Guo Y, Li X, Hu J, Liu L, Ruan X, Chen YP (2015) High-performance thermal interface material based on few-layer graphene composite. J Phys Chem C 119:26753–26759CrossRef
Zurück zum Zitat Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, Korvink JG (2010) Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J Mater Chem 20:8446–8453CrossRef Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, Korvink JG (2010) Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J Mater Chem 20:8446–8453CrossRef
Zurück zum Zitat Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37:1273–1281CrossRef Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37:1273–1281CrossRef
Zurück zum Zitat Prasher R (2006a) thermal interface materials: historical perspective, status, and future directions. Proc IEEE 94(8):1571–1586CrossRef Prasher R (2006a) thermal interface materials: historical perspective, status, and future directions. Proc IEEE 94(8):1571–1586CrossRef
Zurück zum Zitat Prasher R (2006b) Thermal conductivity of composites of aligned nanoscale and microscale wires and pores. IEEE 94:1571–1585CrossRef Prasher R (2006b) Thermal conductivity of composites of aligned nanoscale and microscale wires and pores. IEEE 94:1571–1585CrossRef
Zurück zum Zitat Prasher RS, Shipley J, Prstic S, Koning P, Wang JL (2003) Thermal resistance of particle laden polymeric thermal interface materials. ASME J Heat Transfer 125:1170–1177CrossRef Prasher RS, Shipley J, Prstic S, Koning P, Wang JL (2003) Thermal resistance of particle laden polymeric thermal interface materials. ASME J Heat Transfer 125:1170–1177CrossRef
Zurück zum Zitat Prasher RS, Chang JY, Sauciuc I, Narasimhan S, Chau D, Chrysler G, Myers A, Prstic S, Hu C (2005) Nano and micro technology-based next-generation package-level cooling solutions. Intel Technol J Electron Package Technol Dev 9:285–296 Prasher RS, Chang JY, Sauciuc I, Narasimhan S, Chau D, Chrysler G, Myers A, Prstic S, Hu C (2005) Nano and micro technology-based next-generation package-level cooling solutions. Intel Technol J Electron Package Technol Dev 9:285–296
Zurück zum Zitat Rane SB, Khanna PK, Seth T, Phatak GJ, Amalnerkar DP, Das BK (2003) Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells. Mater Chem Phys 82:237–245CrossRef Rane SB, Khanna PK, Seth T, Phatak GJ, Amalnerkar DP, Das BK (2003) Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells. Mater Chem Phys 82:237–245CrossRef
Zurück zum Zitat Raza MA, Westwood A, Brown A, Hondow N, Stirling C (2011) Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon 49:4269–4279CrossRef Raza MA, Westwood A, Brown A, Hondow N, Stirling C (2011) Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon 49:4269–4279CrossRef
Zurück zum Zitat Schelling PK, Shi L, Goodson KE (2005) Managing heat for electronics. Mater Today 8:30–35CrossRef Schelling PK, Shi L, Goodson KE (2005) Managing heat for electronics. Mater Today 8:30–35CrossRef
Zurück zum Zitat Sekitani T, Someya T (2012) Ambient Electronics. Jpn J Appl Phys 51:100001-1–100001-13CrossRef Sekitani T, Someya T (2012) Ambient Electronics. Jpn J Appl Phys 51:100001-1–100001-13CrossRef
Zurück zum Zitat Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRef Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRef
Zurück zum Zitat Skuriat R, Li JF, Agyakwa PA, Mattey N, Evans P, Johnson CM (2013) Degradation of thermal interface materials for high-temperature power electronics applications. Microeletron Reliab 53:1933–1942CrossRef Skuriat R, Li JF, Agyakwa PA, Mattey N, Evans P, Johnson CM (2013) Degradation of thermal interface materials for high-temperature power electronics applications. Microeletron Reliab 53:1933–1942CrossRef
Zurück zum Zitat Smith B, Brunschwiler T, Michel B (2008) Comparison of transient and static test methods for chip-to-sink thermal interface characterization. Microelectron J 40(9):1379–1386CrossRef Smith B, Brunschwiler T, Michel B (2008) Comparison of transient and static test methods for chip-to-sink thermal interface characterization. Microelectron J 40(9):1379–1386CrossRef
Zurück zum Zitat Sun X, Yu A, Ramesh P, Bekyarova E, Itkis ME, Haddon RC (2011) Oxidized graphite nanoplatelets as an improved filler for thermally conducting epoxy-matrix composites. J Electron Packag 133(2):020905CrossRef Sun X, Yu A, Ramesh P, Bekyarova E, Itkis ME, Haddon RC (2011) Oxidized graphite nanoplatelets as an improved filler for thermally conducting epoxy-matrix composites. J Electron Packag 133(2):020905CrossRef
Zurück zum Zitat Xu YS, Chung DDL (2000) Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces 7:243–256CrossRef Xu YS, Chung DDL (2000) Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces 7:243–256CrossRef
Zurück zum Zitat Yoshida M, Tokuhisa H, Itoh U, Kamata T, Sumita I, Sekine S (2012) Novel low-temperature-sintering type Cu-alloy pastes for silicon solar cells. Energy Procedia 21:66–74CrossRef Yoshida M, Tokuhisa H, Itoh U, Kamata T, Sumita I, Sekine S (2012) Novel low-temperature-sintering type Cu-alloy pastes for silicon solar cells. Energy Procedia 21:66–74CrossRef
Zurück zum Zitat Yovanovich MM (2005) Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans Compon Packag Technol 28(2):182–206CrossRef Yovanovich MM (2005) Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans Compon Packag Technol 28(2):182–206CrossRef
Zurück zum Zitat Zhou WY, Qi SH, Li HD, Shao SY (2007) Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta 452:36–42CrossRef Zhou WY, Qi SH, Li HD, Shao SY (2007) Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta 452:36–42CrossRef
Metadaten
Titel
Screen Printed Graphite Nanoplatelet and Nanoparticle Composites for Thermal Interface Materials Application
verfasst von
Tien-Chan Chang
Yiin-Kuen Fuh
Sheng-Xun Tu
Publikationsdatum
08.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 4/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3116-8

Weitere Artikel der Ausgabe 4/2017

Microsystem Technologies 4/2017 Zur Ausgabe

Neuer Inhalt