Skip to main content

Advertisement

Log in

Study on the size dependent effective Young modulus by EPI method based on modified couple stress theory

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Various experimental and theoretical researches have been shown the size-dependence behavior of the effective Young modulus (EYM) in the micron and sub-micron scales. One of the most accurate methods is the electrostatic pull-in instability (EPI) method that is based on the bending of the classical beam under the electrostatic force. In this paper, the modified couple stress theory (MCST) is employed to calculate the EYM of silicon nanocantilevers. The MCST compensates the inability of the classical continuum mechanic to predicting the size-dependent behavior of the nano-scale structures. Next, as a case study the EYM of silicon nanocantilevers have been calculated and results compared with classical EPI. The governing equation is solved by the Galerkin method and obtained results show significant size-dependent behavior in the EYM. From the other hand, a new value for the material length scale parameter is introduced based on the dimension of the crystal or grain size of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal R, Peng B, Gdoutos EE, Espinosa HD (2008) Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett 8(11):3668–3674

    Article  Google Scholar 

  • Baghani M (2012) Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci 54:99–105

    Article  Google Scholar 

  • Barati MR, Zenkour AM (2018) Post-buckling analysis of imperfect multi-phase nanocrystalline nanobeams considering nanograins and nanopores surface effects. Compos Struct 184:497–505

    Article  Google Scholar 

  • Begley MR, Hutchinson JW (1998) The mechanics of size-dependent indentation. J Mech Phys Solids 46(10):2049–2068

    Article  MATH  Google Scholar 

  • Chong A, Lam DC (1999) Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res 14(10):4103–4110

    Article  Google Scholar 

  • Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69(16):165410

    Article  Google Scholar 

  • Ding JN, Meng YG, Wen SZ (2001) Specimen size effect on mechanical properties of polysilicon microcantilever beams measured by deflection using a nanoindenter. Mater Sci Eng B 83(1):42–47

    Article  Google Scholar 

  • Du H, Zhou G, Zhao Y, Chen G, Chau FS (2017) Magnetic field sensor based on coupled photonic crystal nanobeam cavities. Appl Phys Lett 110(6):061110

    Article  Google Scholar 

  • Eremeyev VA (2016) On the effective properties of elastic materials and structures at the micro-and nano-scale considering various models of surface elasticity. In: Materials with internal structure. Springer International Publishing, pp 29–41

  • Fan T, Yang L (2017) Effective Young’s modulus of nanoporous materials with cuboid unit cells. Acta Mech 228(1):21–29

    Article  MathSciNet  MATH  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia 42(2):475–487

    Article  Google Scholar 

  • Gomez J, Basaran C (2007) Determination of strain gradient plasticity length scale for microelectronics solder alloys. J Electron Packag 129(2):120–128

    Article  Google Scholar 

  • Gordon MJ, Baron T, Dhalluin F, Gentile P, Ferret P (2009) Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett 9(2):525–529

    Article  Google Scholar 

  • Gouadec G, Colomban P (2007) Raman Spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater 53(1):1–56

    Article  Google Scholar 

  • Guo JG, Zhao YP (2007) The size-dependent bending elastic properties of nanobeams with surface effects. Nanotechnology 18(29):295701

    Article  Google Scholar 

  • Houben L, Luysberg M, Carius R (2003) Microtwinning in microcrystalline silicon and its effect on grain-size measurements. Phys Rev B 67(4):045312

    Article  Google Scholar 

  • Itou S (1981) The effect of couple-stresses on the stress concentration around a moving crack. Int J Math Math Sci 4(1):165–180

    Article  MathSciNet  MATH  Google Scholar 

  • Kim JS, Park SH, Park JH, Lee JS (2006) Molecular dynamics simulation of elastic properties of silicon nanocantilevers. Nanoscale Microscale Thermophys Eng 10(1):55–65

    Article  Google Scholar 

  • Kizuka T, Takatani Y, Asaka K, Yoshizaki R (2005) Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width. Phys Rev B 72(3):035333

    Article  Google Scholar 

  • Koiter WT (1964) Couple stresses in the theory of elasticity, I and II. Nederl Akad Wetensch Proc Ser B 67:17–29

    MathSciNet  MATH  Google Scholar 

  • Li X, Ono T, Wang Y, Esashi M (2003) Ultrathin single-crystalline-silicon cantilever resonators: fabrication technology and significant specimen size effect on Young’s modulus. Appl Phys Lett 83(15):3081–3083

    Article  Google Scholar 

  • Li M, Tang HX, Roukes ML (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol 2(2):114–120

    Article  Google Scholar 

  • Maani Miandoab E, Nejat Pishkenari H, Yousefi-Koma A, Tajaddodianfar F, Ouakad H (2017) Size effect impact on the mechanical behavior of an electrically actuated polysilicon nanobeam based NEMS resonator. J Appl Comput Mech 3(2):135–143

    Google Scholar 

  • Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139

    Article  Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Nilsson SG, Borrise X, Montelius L (2004) Size effect on Young’s modulus of thin chromium cantilevers. Appl Phys Lett 85:3555

    Article  Google Scholar 

  • Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425

    Article  MATH  Google Scholar 

  • Osterberg PM (1995) electrostatically actuated micromechanical test structure for material property measurement. Ph.D. Dissertation, Massachusetts Institute of Technology

  • Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. Microelectromech Syst J 6(2):107–118

    Article  Google Scholar 

  • Park SH, Kim JS, Park JH, Lee JS, Choi YK, Kwon OM (2005) Molecular dynamics study on size-dependent elastic properties of silicon nanocantilevers. Thin Solid Films 492(1):285–289

    Article  Google Scholar 

  • Poelma RH, Sadeghian H, Noijen SPM, Zaal JJM, Zhang GQ (2011) A numerical experimental approach for characterizing the elastic properties of thin films: application of nanocantilevers. J Micromech Microeng 21(6):065003

    Article  Google Scholar 

  • Rahaeifard M, Kahrobaiyan MH, Asghari M, Ahmadian MT (2011) Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens Actuators A 171(2):370–374

    Article  MATH  Google Scholar 

  • Rahmani O, Niaei AM, Hosseini SAH, Shojaei M (2017) In-plane vibration of FG micro/nano-mass sensor based on nonlocal theory under various thermal loading via differential transformation method. Superlattices Microstruct 101:23–39

    Article  Google Scholar 

  • Rezazadeh G, Fathalilou M, Shabani R (2009) Static and dynamic stabilities of a microbeam actuated by a piezoelectric voltage. J Microsyst Technol 15:1785–1791

    Article  Google Scholar 

  • Rokni H, Seethaler RJ, Milani AS, Hosseini-Hashemi S, Li XF (2013) Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation. Sens Actuators A 190:32–43

    Article  Google Scholar 

  • Sadeghian H, Yang CK, Goosen JFL, Van Der Drift E, Bossche A, French PJ, Van Keulen F (2009) Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl Phys Lett 94(22):221903

    Article  Google Scholar 

  • Sadeghian H, Yang CK, Goosen JF, Bossche A, Staufer U, French PJ, van Keulen F (2010a) Effects of size and defects on the elasticity of silicon nanocantilevers. J Micromech Microeng 20(6):064012

    Article  Google Scholar 

  • Sadeghian H, Goosen JF, Bossche A, Thijsse BJ, van Keulen F (2010b) Surface reconstruction and elastic behavior of silicon nanobeams: the impact of applied deformation. Thin Solid Films 518(12):3273–3275

    Article  Google Scholar 

  • Sadeghian H, Goosen H, Bossche A, Thijsse B, van Keulen F (2011) On the size-dependent elasticity of silicon nanocantilevers: impact of defects. J Phys D Appl Phys 44(7):072001

    Article  Google Scholar 

  • Sedighi HM, Ouakad HM, Khooran M (2017) Instability characteristics of free-standing nanowires based on the strain gradient theory with the consideration of casimir attraction and surface effects. Metrol Meas Syst 24(3):489–507

    Article  Google Scholar 

  • Shilo D, Drezner H, Dorogoy A (2008) Investigation of interface properties by nanoscale elastic modulus mapping. Phys Rev Lett 100(3):035505

    Article  Google Scholar 

  • Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115

    Article  Google Scholar 

  • Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

  • Yu H, Sun C, Zhang WW, Lei SY, Huang QA (2013) Study on size-dependent Young’s modulus of a silicon nanobeam by molecular dynamics simulation. J Nanomater 2013:319302. https://doi.org/10.1155/2013/319302

    Google Scholar 

  • Zhang Y, Ai J, Xiang Y, He Q, Li T, Ma J (2017) Mass sensor based on split-nanobeam optomechanical oscillator. In: Selected papers of the Chinese Society for Optical Engineering conferences held October and November 2016. International Society for Optics and Photonics, p 102552U

  • Zhao M, Slaughter WS, Li M, Mao SX (2003) Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Mater 51(15):4461–4469

    Article  Google Scholar 

  • Zhu HX (2010) Size-dependent elastic properties of micro-and nano-honeycombs. J Mech Phys Solids 58(5):696–709

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaher Rahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, Z., Rezazadeh, G. & Sadeghian, H. Study on the size dependent effective Young modulus by EPI method based on modified couple stress theory. Microsyst Technol 24, 2983–2989 (2018). https://doi.org/10.1007/s00542-018-3708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3708-6

Navigation