Skip to main content
Erschienen in: Microsystem Technologies 10/2019

10.01.2019 | Technical Paper

A novel numerical modeling paradigm for bio particle tracing in non-inertial microfluidics devices

verfasst von: Amirali Ebadi, Reihaneh Toutouni, Mohammad Javad Farshchi Heydari, Morteza Fathipour, Madjid Soltani

Erschienen in: Microsystem Technologies | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we report on the design and implementation of a new method for the two dimensional (2D) simulation of rigid spherical particles trajectory which are to be separated in a microfluidics device based on their sizes. The advantages of efficient particle trajectory simulation method (EPTSM) include drastically smaller runtimes as compared with other methods as well as the ability to include particle collisions with channel’s walls and its ability to be extended to 3D simulations. Numerically simulated results were verified using a specifically designed and fabricated deterministic lateral displacement microfluidic device test structure. The method has provided realistic results for the study of multi-particles throughout the entire channel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Fandi M et al (2011) New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robot Comput Integr Manuf 27(2):237–244CrossRef Al-Fandi M et al (2011) New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robot Comput Integr Manuf 27(2):237–244CrossRef
Zurück zum Zitat Balvin M et al (2009) Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys Rev Lett 103(7):078301CrossRef Balvin M et al (2009) Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys Rev Lett 103(7):078301CrossRef
Zurück zum Zitat Beech J (2005) Deterministic lateral displacement devices. MSc, Lund University Beech J (2005) Deterministic lateral displacement devices. MSc, Lund University
Zurück zum Zitat Beech J (2011) Microfluidics separation and analysis of biological particles. Fasta Tillståndets Fysik Beech J (2011) Microfluidics separation and analysis of biological particles. Fasta Tillståndets Fysik
Zurück zum Zitat Beech JP, Jönsson P, Tegenfeldt JO (2009) Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9(18):2698–2706CrossRef Beech JP, Jönsson P, Tegenfeldt JO (2009) Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9(18):2698–2706CrossRef
Zurück zum Zitat Çetin B, Li D (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32(18):2410–2427CrossRef Çetin B, Li D (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32(18):2410–2427CrossRef
Zurück zum Zitat Chen Y et al (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14(4):626–645CrossRef Chen Y et al (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14(4):626–645CrossRef
Zurück zum Zitat Choi S et al (2014) High-throughput DNA separation in nanofilter arrays. Electrophoresis 35(15):2068–2077CrossRef Choi S et al (2014) High-throughput DNA separation in nanofilter arrays. Electrophoresis 35(15):2068–2077CrossRef
Zurück zum Zitat Davis JA et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103(40):14779–14784CrossRef Davis JA et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103(40):14779–14784CrossRef
Zurück zum Zitat Duffy DC et al (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70(23):4974–4984CrossRef Duffy DC et al (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70(23):4974–4984CrossRef
Zurück zum Zitat Green JV, Radisic M, Murthy SK (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81(21):9178–9182CrossRef Green JV, Radisic M, Murthy SK (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81(21):9178–9182CrossRef
Zurück zum Zitat Huang LR et al (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990CrossRef Huang LR et al (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990CrossRef
Zurück zum Zitat Hyun KA, Jung HI (2013) Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Electrophoresis 34(7):1028–1041CrossRef Hyun KA, Jung HI (2013) Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Electrophoresis 34(7):1028–1041CrossRef
Zurück zum Zitat Inglis D (2007) Microfluidic devices for cell separation. Princeton University, Princeton Inglis D (2007) Microfluidic devices for cell separation. Princeton University, Princeton
Zurück zum Zitat Inglis DW et al (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6(5):655–658CrossRef Inglis DW et al (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6(5):655–658CrossRef
Zurück zum Zitat Inglis DW et al (2008) Microfluidic device for label-free measurement of platelet activation. Lab Chip 8(6):925–931CrossRef Inglis DW et al (2008) Microfluidic device for label-free measurement of platelet activation. Lab Chip 8(6):925–931CrossRef
Zurück zum Zitat Jin C et al (2014) Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip 14(1):32–44CrossRef Jin C et al (2014) Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip 14(1):32–44CrossRef
Zurück zum Zitat Khodaee F et al (2016) Numerical simulation of separation of circulating tumor cells from blood stream in deterministic lateral displacement (dld) microfluidic channel. J Mech 32(4):463–471CrossRef Khodaee F et al (2016) Numerical simulation of separation of circulating tumor cells from blood stream in deterministic lateral displacement (dld) microfluidic channel. J Mech 32(4):463–471CrossRef
Zurück zum Zitat Krishnan JN et al (2009) Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Electrophoresis 30(9):1457–1463CrossRef Krishnan JN et al (2009) Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Electrophoresis 30(9):1457–1463CrossRef
Zurück zum Zitat Krüger T, Holmes D, Coveney PV (2014) Deformability-based red blood cell separation in deterministic lateral displacement devices—a simulation study. Biomicrofluidics 8(5):054114CrossRef Krüger T, Holmes D, Coveney PV (2014) Deformability-based red blood cell separation in deterministic lateral displacement devices—a simulation study. Biomicrofluidics 8(5):054114CrossRef
Zurück zum Zitat McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21):4139–4158CrossRef McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21):4139–4158CrossRef
Zurück zum Zitat Quek R, Le DV, Chiam K-H (2011) Separation of deformable particles in deterministic lateral displacement devices. Phys Rev E 83(5):056301CrossRef Quek R, Le DV, Chiam K-H (2011) Separation of deformable particles in deterministic lateral displacement devices. Phys Rev E 83(5):056301CrossRef
Zurück zum Zitat Smith JP et al (2012) Microfluidic transport in microdevices for rare cell capture. Electrophoresis 33(21):3133–3142CrossRef Smith JP et al (2012) Microfluidic transport in microdevices for rare cell capture. Electrophoresis 33(21):3133–3142CrossRef
Zurück zum Zitat Takagi J et al (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5(7):778–784CrossRef Takagi J et al (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5(7):778–784CrossRef
Zurück zum Zitat Vig AL (2010) Pinched flow fractionation—technology and application. Ph.D. thesis, Department of Micro-and Nanotechnology Technical University of Denmark Vig AL (2010) Pinched flow fractionation—technology and application. Ph.D. thesis, Department of Micro-and Nanotechnology Technical University of Denmark
Zurück zum Zitat Yan S et al (2015) A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps. Electrophoresis 36(2):284–291CrossRef Yan S et al (2015) A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps. Electrophoresis 36(2):284–291CrossRef
Zurück zum Zitat Zheng S et al (2005) Deterministic lateral displacement MEMS device for continuous blood cell separation. In: Micro electro mechanical systems, 2005. MEMS 2005. 18th IEEE international conference on, IEEE Zheng S et al (2005) Deterministic lateral displacement MEMS device for continuous blood cell separation. In: Micro electro mechanical systems, 2005. MEMS 2005. 18th IEEE international conference on, IEEE
Zurück zum Zitat Zhu J, Tzeng TRJ, Xuan X (2010) Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 31(8):1382–1388CrossRef Zhu J, Tzeng TRJ, Xuan X (2010) Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 31(8):1382–1388CrossRef
Metadaten
Titel
A novel numerical modeling paradigm for bio particle tracing in non-inertial microfluidics devices
verfasst von
Amirali Ebadi
Reihaneh Toutouni
Mohammad Javad Farshchi Heydari
Morteza Fathipour
Madjid Soltani
Publikationsdatum
10.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4275-6

Weitere Artikel der Ausgabe 10/2019

Microsystem Technologies 10/2019 Zur Ausgabe

Neuer Inhalt