Skip to main content
Log in

Mycorrhiza in sedges—an overview

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Most terrestrial plants associate with root-colonising mycorrhizal fungi, which improve the fitness of both the fungal and plant associates. However, exceptions exist both between and within plant families failing to associate with mycorrhizal fungi or in the incidence and the extent of mycotrophy, which may vary greatly. Sedges are important pioneers of disturbed habitats and often dominate vegetations like wetlands, and arctic and alpine vegetations, in which the mycorrhizal inoculum in the soil is often low or absent. In the past, sedges were often designated as non-mycorrhizal, though limited reports indicated the presence of mycorrhiza in certain species. However, studies since 1987 indicate widespread occurrence of mycorrhiza in sedges. Based on these studies, the family Cyperaceae is no longer a non-mycorrhizal family, but the mycorrhizal status of its members is greatly influenced by environmental conditions. Further, sedges appear to have several morphological adaptations to thrive in the absence of mycorrhizal association. Though mycorrhizal associations have been noted in many sedge species, the ecological role of this association is not well documented and no clear generalisation can be drawn. Similarly, the role of mycorrhizal fungi on sedge growth and nutrient uptake or non-nutritional benefits has yet to be fully ascertained. This paper reviews the current information available on the incidence of mycorrhiza in sedges and the possible reasons for low mycotrophy observed in this family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–i

Similar content being viewed by others

References

  • Aerts R (1995) The advantages of being evergreen. Trends Ecol Evol 10:402–407

    Article  Google Scholar 

  • Aerts R, de Caluwe H, Konings H (1992) Seasonal allocation of biomass and nitrogen in four Carex species from mesotrophic and eutrophic fens as affected by nitrogen supply. J Ecol 80:653–664

    Google Scholar 

  • Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181

    Google Scholar 

  • Allen EB, Chambers JC, Coonor KF, Allen MF, Brown RW (1987) Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arct Alp Res 19:11–20

    Google Scholar 

  • Allsopp N, Stock WD (1993) Mycorrhizal status of plants growing in the Cape Floristic Region, South Africa. Bothalia 23:91–104

    Google Scholar 

  • Ammani K, Venkateswarlu K, Rao AS (1994) Vesicular-arbuscular mycorrhizae in grasses: their occurrence, identity and development. Phytomorphology 44:159–168

    Google Scholar 

  • Anwar QMK, Jalaluddin M (1994) Significance of VAM in weeds of wheat. Mycorrhiza News 5:9–11

    Google Scholar 

  • Aziz T, Sylvia DM, Doren RE (1995) Activity and species composition of arbuscular mycorrhizal fungi following soil removal. Ecol Appl 5:776–784

    Google Scholar 

  • Barni E, Siniscalco C (2000) Vegetation dynamics and arbuscular mycorrhiza in old-field successions of the western Italian Alps. Mycorrhiza 10:63–72

    Article  Google Scholar 

  • Bell EA (1981) The physiological role(s) of secondary (natural) products. In: Conn EE (ed) The biochemistry of plants a comprehensive treatise, vol 7: Secondary plant products. Academic Press, New York, pp 1–19

  • Bell KL, Bliss LC (1978) Root growth in a polar semi desert environment. Can J Bot 56:2470–2490

    Google Scholar 

  • Bellgard SE (1991) Mycorrhizal associations of plant species in Hawkesbury sandstone vegetation. Aust J Bot 39:357–364

    Google Scholar 

  • Berendse F, Jonasson S (1992) Nutrient use and nutrient cycling in northern ecosystems. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda D (eds) Arctic ecosystems in a changing climate, an ecophysiological perspective. Academic Press, San Diego, pp 337–356

  • Billings WD, Peterson KM, Shaver GR, Trent AW (1977) Root growth, respiration and carbon dioxide evolution in an arctic tundra soil. Arct Alp Res 9:127–135

    Google Scholar 

  • Blaszkowski J (1994) Arbuscular fungi and mycorrhizae (Glomales) of the Hel Peninsula, Poland. Mycorrhiza 45:71–88

    Article  Google Scholar 

  • Bledose C, Klein P, Bliss LC (1990) A survey of mycorrhizal plants on Truelove Lowland, Devon Island, N.W.T. Can J Bot 68:1848–1856

    Google Scholar 

  • Bliss LC, Matveyeva NV (1992) Circumpolar arctic vegetation. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda D (eds) Arctic ecosystems in a changing climate, an ecophysiological perspective. Academic Press, San Diego, pp 59–89

  • Brady NC (1990) The nature and properties of soils. 10th edn. Macmillan, New York

  • Brown AM, Bledose C (1996) Spatial and temporal dynamics of mycorrhizas in Jaumea carnoza, a tidal saltmarsh halophyte. J Ecol 84:703–715

    Google Scholar 

  • Callaghan TV, Svensson BM, Bowman H, Lindley DK, Carlsson BA (1990) Models of clonal plant growth based on population dynamics and architecture. Okios 57:257–269

    Google Scholar 

  • Chapin FS III (1974) Morphological and physiological mechanisms of temperature compensation in phosphate absorption along a latitudinal gradient. Ecology 55:1180–1198

    CAS  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    CAS  Google Scholar 

  • Chapin FS III, Barsdate RJ, Barel D (1978) Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Okios 31:189–199

    CAS  Google Scholar 

  • Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal sedge. Nature 361:150–153

    CAS  Google Scholar 

  • Christie P, Nicolson TH (1983) Are mycorrhizas absent from the Antarctic? Trans Br Mycol Soc 80:557–560

    Google Scholar 

  • Cladwell BA, Jumpponen A, Trappe JM (2000) Utilization of major detrital substrates by dark-septate root endophytes. Mycologia 92:230–232

    Google Scholar 

  • Cooke JC, Lefor MW (1998) The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Rest Ecol 6:214–222

    Article  Google Scholar 

  • Cornwell WK, Bedford BL, Chapin CT (2001) Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. Am J Bot 88:1824–1829

    Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

  • Davies J, Briarty LG, Rieley JO (1973) Observations on the swollen lateral roots of the Cyperaceae. New Phytol 72:167–174

    Google Scholar 

  • Dharmarajan S, Kannan K, Lakshminarasimhan C (1993) Vesicular-arbuscular (VA) mycorrhizal status of some aquatic and marshy plants. Acta Bot Indica 21:167–171

    Google Scholar 

  • Dhereteteldt T, Jònsdòttir IS (1999) Extensive physiological integration in intact clonal systems of Carex arenaria. J Ecol 87:258–264

    Article  Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108:183–200

    Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Google Scholar 

  • Fitter AH (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106 [Suppl]:61–77

    Google Scholar 

  • Föhse D, Jungk A (1983) Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil 74:359–368

    Google Scholar 

  • Fontenla S, Godoy R, Rosso P, Havrylenko M (1998) Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza 8:29–33

    Article  Google Scholar 

  • Fontenla S, Puntieri J, Ocampo JA (2001) Mycorrhizal associations in the Patagonian steppe, Argentina. Plant Soil 233:13–29

    CAS  Google Scholar 

  • Francis R, Read DJ (1994) The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159:11–25

    Google Scholar 

  • Gupta N, Ali SS (1993) VA-mycorrhizal association of the family Cyperaceae. Indian J Microbiol 33:219–221

    Google Scholar 

  • Harikumar VS (2001) Arbuscular mycorrhizal synthesis in some wetland plants in Kerala. Mycorrhiza News 12:14–15

    Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105 [Suppl]:1–102

    Google Scholar 

  • Haselwandter K (1987) Mycorrhizal infection and its possible ecological significance in climatically and nutritionally stressed alpine plant communities. Angew Bot 61:107–114

    Google Scholar 

  • Haselwandter K, Read DJ (1982) The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia 53:352–354

    Google Scholar 

  • Heal OW, Callaghan TV, Chapman K (1989) Can population and process ecology be combined to understand nutrient cycling? In: Clarholm M, Bergstrom L (eds) Ecology of arable land. Developments in plant and soil science. Kluwer, Dordrecht, pp 205–216

  • Hetrick BAD (1991) Mycorrhizas and root architecture. Experientia 47:355–362

    Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium-legume symbiosis. Fungal Gene Biol 23:205–212

    Article  CAS  Google Scholar 

  • Hutchings MJ, Wijesinghe DK (1997) Patchy habitats, division of labour and growth dividends in clonal plants. Trends Ecol Evol 12:390–394

    Google Scholar 

  • Jackson MB (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol 36:145–174

    Article  CAS  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    CAS  Google Scholar 

  • Jain RK, Hasan N, Singh RK, Pandey PN (1997) Vesicular-arbuscular mycorrhizal (VAM) association in some weeds of forage legumes. Mycorrhiza News 9:10–12

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Jonasson S (1989) Implications of leaf longevity, leaf nutrient re-absorption and translocation for the resource economy of five evergreen plant species. Okios 56:121–131

    Google Scholar 

  • Jonasson S, Chapin FS III (1985) Significance of sequential leaf development for nutrient balance of the cotton sedge Eriophorum vaginatum L. Oecologia 67:511–518

    Google Scholar 

  • Jonasson S, Chapin FS III (1991) Seasonal uptake and allocation of phosphorus in Eriophorum vaginatum L. measured by labelling with 32P. New Phytol 118:349–357

    CAS  Google Scholar 

  • Jonasson S, Shaver GR (1999) Within-stand nutrient cycling in arctic and boreal wetlands. Ecology 80:2139–2150

    Google Scholar 

  • Jònsdòttir IS, Callaghan TV (1990) Interclonal translocation of ammonium and nitrate nitrogen in Carex bigelowii Torr. Ex Schwein. using 15N and nitrate reductase assays. New Phytol 114:419–428

    Google Scholar 

  • Justin SHWF, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–475

    Google Scholar 

  • Kershaw KA (1962) Quantitative ecological studies from Lanmanndhellir, Iceland. II. The rhizome behaviour of Carex bigelowii and Calamagrostis neglata. J Ecol 50:171–179

    Google Scholar 

  • Khon LM, Stasovski E (1990) The mycorrhizal status of plants at Alexandra Firod, Ellesmere Island, Canada, a high arctic site. Mycologia 82:23–35

    Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383

    Google Scholar 

  • Komai K, Tang C-S, Nishimoto RK (1991) Chemotypes of Cyperus rotundus in Pacific Rim and basin: distribution and inhibitory activities of their essential oils. J Chem Ecol 17:1–8

    CAS  Google Scholar 

  • Koske RE, Gemma JN, Flynn T (1992) Mycorrhizae in Hawaiian angiosperms: a survey with implications for the origin of native flora. Am J Bot 79:853–862

    Google Scholar 

  • Kroehler CJ, Linkins AE (1991) The absorption of inorganic phosphate from P-labelled inositol hexaphosphate by Eriophorum vaginatum. Oecologia 85:424–428

    Google Scholar 

  • Kroon H de, van Groenendael J (eds) (1997) The ecology and evolution of clonal plants. Backhuys, Leiden

  • Kroon H de, Fransen B, van Rheenen JWA, van Dijk A, Kreulen R (1996) High levels of interramet water translocation in two rhizomatous Carex species, as quantified by deuterium labelling. Oecologia 106:73–84

    Google Scholar 

  • Kroon H de, van der Zalm E, van Rheenen JWA, van Dijk A, Kreulen R (1998) The interaction between water and nitrogen translocation in a rhizomatous sedge (Carex flacca). Oecologia 116:38–49

    Article  Google Scholar 

  • Lamnot BB (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Bot Rev 48:579–689

    Google Scholar 

  • Lamnot BB (1993) Why are hairy root clusters so abundant in the most nutrient-improvised soils of Australia? Plant Soil 155/156:269–272

    Google Scholar 

  • Laursen GA, Treu R, Seppelt RD, Stephenson SL (1997) Mycorrhizal assessment of vascular plants from subantarctic Macquarie island. Arct Alp Res 29:483–491

    Google Scholar 

  • Lesica P, Antibus RK (1986) Mycorrhizae of alpine fell-field communities on soils derived from crystalline and calcareous parent material. Can J Bot 64:1691–1697

    CAS  Google Scholar 

  • Lipson DA, Schadt CW, Schmidt SK, Monson RK (1999) Ectomycorrhizal transfer of amino acid-nitrogen to the alpine sedge Kobresia myosuroides. New Phytol 142:163–167

    Article  CAS  Google Scholar 

  • Logan VS, Clarke PJ, Allaway WG (1989) Mycorrhizas and root attributes of plants of coastal sand dunes of New South Wales. Aust J Plant Physiol 16:141–146

    Google Scholar 

  • Louis I (1990) A mycorrhizal survey of plant species colonizing coastal reclaimed land in Singapore. Mycologia 82:772–778

    Google Scholar 

  • Lovera M, Cuenca G (1996) Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored savannas in La Gran Sabana, Venezuela. Mycorrhiza 6:111–113

    Article  Google Scholar 

  • Lyford WH (1975) Rhizography of non-woody roots of trees in the forest floor. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, New York, pp 179–196

  • Massicotte HB, Melville LH, Peterson RL, Luoma DL (1998) Anatomical aspects of field ectomycorrhizas on Polygonum viviparum (Polygonaceae) and Kobresia bellardii (Cyperaceae). Mycorrhiza 7:287–292

    Article  Google Scholar 

  • Mayr R, Godoy R (1989) Seasonal patterns in vesicular-arbuscular mycorrhiza in Melic-Beech forest. Agric Ecosyst Environ 29:281–288

    Article  Google Scholar 

  • Meney KA, Dixon KW, Scheltema M, Pate AS (1993) Occurrence of vesicular mycorrhizal fungi in dryland species of Restionaceae and Cyperaceae from south-west Western Australia. Aust J Bot 47:773–737

    Google Scholar 

  • Miller RM, Smith CI, Jastrow JD, Bever JD (1999) Mycorrhizal status of the genus Carex (Cyperaceae). Am J Bot 86:547–553

    PubMed  Google Scholar 

  • Miller SP (2000) Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155

    Article  Google Scholar 

  • Mohankumar V, Ragupathy S, Nirmala CB, Mahadevan A (1988) Distribution of vesicular arbuscular mycorrhizae (VAM) in the sandy beach of Madras coast. Curr Sci 57:367–368

    Google Scholar 

  • Moog PR (1998) Flooding tolerance of Carex species. I. Root structure. Planta 207:189–198

    Article  CAS  Google Scholar 

  • Moog PR, Brüggemann W (1998) Flooding tolerance of Carex species. II. Root gas-exchange capacity. Planta 207:199–206

    Article  CAS  Google Scholar 

  • Muthukumar T (1996) Studies on the ecology and taxonomy of vesicular arbuscular mycorrhizal fungi from Western Ghats, southern India. PhD Thesis, Bharathiar University, Coimbatore, Tamil Nadu, India

  • Muthukumar T, Udaiyan K (2000) Arbuscular mycorrhizas of plants growing in the Western Ghats region, southern India. Mycorrhiza 9:297–313

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K, Manian S (1996) Vesicular-arbuscular mycorrhiza in tropical sedges of southern India. Biol Fertil Soils 22:96–100

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K, Karthikeyan A, Manian S (1997) Influence of native endomycorrhiza, soil flooding and nurse plant on mycorrhizal status and growth of purple nutsedge (Cyperus rotundus L.). Agric Ecosyst Environ 61:51–58

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K, Vasantha K, Kleiner D, Manian S (1999) Mycorrhizae in sedges as related to root character and its ecological significance. Pertanika J Trop Agric Sci 22:7–17

    Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Google Scholar 

  • Pawlowska TE, Blaszkowski J, Rühling A (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505

    Article  Google Scholar 

  • Peat H, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British Flora. New Phytol 125:845–854

    Google Scholar 

  • Powell CL (1975) Rushes and sedges are non-mycotrophic. Plant Soil 42:481–484

    Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1996) Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia 108:488–494

    Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1999) Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 80:2408–2419

    Google Scholar 

  • Ragupathy S, Mahadevan A (1993) Distribution of vesicular-arbuscular mycorrhizae in the plants and rhizosphere soils of the tropical plains, Tamil Nadu, India. Mycorrhiza 3:123–136

    Google Scholar 

  • Ragupathy S, Mohankumar V, Mahadevan A (1990) Occurrence of vesicular-arbuscular mycorrhizae in tropical hydrophytes. Aquat Bot 36:287–291

    Article  Google Scholar 

  • Raman N, Nagarajan N, Gopinathan S, Sambandan K (1993) Mycorrhizal status of plant species colonizing a magnesite mine spoil in India. Biol Fertil Soils 16:76–78

    Google Scholar 

  • Rao AS (1990) Root flavonoids. Bot Rev 56:1–84

    Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations of the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352

    Google Scholar 

  • Reddell P, Milnes AR (1992) Mycorrhizas and other specialized nutrient-acquisition strategies: their occurrence in woodland plants from Kakadu and their role in rehabilitation of waste rock dumps at a local uranium mine. Aust J Bot 40:223–242

    Google Scholar 

  • Reynolds FRC (1975) Tree rootlets and their distribution. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, New York, pp 163–177

  • Reznicek AA (1986) The taxonomy of Carex sect. Hymenochlaenae (Cyperaceae) in Mexico and Central America. Syst Bot 11:56–87

    Google Scholar 

  • Rickerl DH, Sancho FO, Ananth S (1994) Vesicular-arbuscular endomycorrhizal colonization of wetland plants. J Environ Qual 23:913–916

    Google Scholar 

  • Rubio G, Oesterheld M, Alvarez CR, Lavado RS (1997) Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics. Oecologia 112:150–155

    Article  Google Scholar 

  • Schippers P, Olff H (2000) Biomass partitioning, architecture and turnover of six herbaceous species from habitats with different nutrient supply. Plant Ecol 149:219–231

    Article  Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AE (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374

    Google Scholar 

  • Shaver GR, Billings WD (1975) Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. Ecology 56:401–409

    Google Scholar 

  • Silva GAD, Santos BAD, Alves MV, Maia LC (2001) Arbuscular mycorrhiza in species of Commelinidae (Liliopsida) in the state of Pernambuco (Brazil). Acta Bot Bras 15:155–165

    Google Scholar 

  • Srivasta NK, Basu M (1995) Occurrence of vesicular-arbuscular mycorrhizal fungi in some medicinal plants. In: Adholeya A, Singh S (eds) Mycorrhizae: biofertilizers for the future. TERI, New Delhi, pp 59–61

  • Tester M, Smith SE, Smith FA (1987) The phenomenon of “nonmycorrhizal” plants. Can J Bot 65:419–431

    Google Scholar 

  • Thormann MN, Currah RS, Bayley SE (1999) The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands 19:438–450

    Google Scholar 

  • Titus JH, del Moral R (1998) Vesicular-arbuscular mycorrhizae influence Mount St. Helens pioneer species in greenhouse experiments. Oikos 81:495–510

    Google Scholar 

  • Treu R, Laursen GA, Stephenson SL, Landolt JC, Densmore R (1996) Mycorrhizae from Denali National Park and Preserve, Alaska. Mycorrhiza 6:21–29

    Article  Google Scholar 

  • Trought MCT, Drew MC (1980) The development of water-logging damage in young wheat plants in anaerobic solution cultures. J Exp Bot 31:1573–1585

    CAS  Google Scholar 

  • Turnau K, Mitka J, Kedzierska A (1992) Mycorrhizal status of herb-layer plants in a fertilized oak-pine forest. Plant Soil 143:148–152

    CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Väre H, Vestberg M, Eurola S (1992) Mycorrhiza and root-associated fungi in Spitsbergen. Mycorrhiza 1:93–104

    Google Scholar 

  • Väre H, Vestberg M, Ohtonen R (1997) Shifts in mycorrhiza and microbial activity along an Oroartic altitudinal gradient in northern Fennoscandia. Arct Alp Res 29:93–104

    Google Scholar 

  • Visser JW, Bögermann GM, van de Steeg HM, Pierik R, Blom CWPM (2000) Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation. New Phytol 148:93–103

    Article  Google Scholar 

  • Wetzel PR, van der Valk AG (1995) Vesicular-arbuscular mycorrhizae in prairie pothole wetland vegetation in Iowa and North Dakota. Can J Bot 74:883–890

    Google Scholar 

  • Wetzel PR, van der Valk G (1998) Effects of nutrient and soil moisture on competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecol 138:179–190

    Article  Google Scholar 

Download references

Acknowledgement

The senior author (T.M.) thanks the Council of Scientific and Industrial Research, New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Muthukumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthukumar, T., Udaiyan, K. & Shanmughavel, P. Mycorrhiza in sedges—an overview. Mycorrhiza 14, 65–77 (2004). https://doi.org/10.1007/s00572-004-0296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-004-0296-3

Keywords

Navigation