Skip to main content

Advertisement

Log in

The arbuscular mycorrhizal symbiosis links N mineralization to plant demand

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) fungi facilitate inorganic N (NH4 + or NO3 ) uptake by plants, but their role in N mobilization from organic sources is unclear. We hypothesized that arbuscular mycorrhizae enhance the ability of a plant to use organic residues (ORs) as a source of N. This was tested under controlled glasshouse conditions by burying a patch of OR in soil separated by 20-μm nylon mesh so that only fungal hyphae can pass through it. The fate of the N contained in the OR patch, as influenced by Glomus claroideum, Glomus clarum, or Glomus intraradices over 24 weeks, was determined using 15N as a tracer. AM fungal species enhanced N mineralization from OR to different levels. N recovery and translocation to Russian wild rye by hyphae reached 25% of mineralized N in G. clarum, which was most effective despite its smaller extraradical development in soil. Mobilization of N by G. clarum relieved plant N deficiency and enhanced plant growth. We show that AM hyphae modify soil functioning by linking plant growth to N mineralization from OR. AM species enhance N mineralization differentially leading to species-specific changes in the quality of the soil environment (soil C-to-N ratio) and structure of the soil microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol 112:61–68. doi:10.1111/j.1469-8137.1989.tb00309.x

    Article  CAS  Google Scholar 

  • Andrade G (2004) Role of functional groups of microorganisms on the rhizosphere microcosm dynamics. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Germany, pp 51–71

    Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79. doi:10.1023/A:1004249629643

    Article  CAS  Google Scholar 

  • Aneja M, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch J, Schloter M (2006) Microbial colonization of beech and spruce litter—influence of decomposition site and plant litter species on the diversity of microbial community. Microb Ecol 52:127–135. doi:10.1007/s00248-006-9006-3

    Article  PubMed  Google Scholar 

  • Aristizábal C, Rivera EL, Janos DP (2004) Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. Mycorrhiza 14:221–228. doi:10.1007/s00572-003-0259-0

    Article  PubMed  Google Scholar 

  • Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153. doi:10.1038/361150a0

    Article  CAS  Google Scholar 

  • Dalpé Y, Hamel C (2008) Vesicular-arbuscular mycorrhiza. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis, Boca Raton, pp 287–302

    Google Scholar 

  • Garcia Romera I, Garcia Garrido JM, Ocampo JA (1991) Pectolytic enzymes in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. FEMS Microbiol Lett 78:343–346. doi:10.1111/j.1574-6968.1991.tb04467.x

    Article  CAS  Google Scholar 

  • Garcia-Garrido JM, Garcia-Romera I, Ocampo JA (1992) Cellulase production by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.). Gerd Trappe. New Phytol 121:221–226. doi:10.1111/j.1469-8137.1992.tb01107.x

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823. doi:10.1038/nature03610

    Article  CAS  PubMed  Google Scholar 

  • Ha K, Marschner P, Bünemann E (2008) Dynamics of C, N, P and microbial community composition in particulate soil organic matter during residue decomposition. Plant Soil 303:253–264. doi:10.1007/s11104-007-9504-1

    Article  CAS  Google Scholar 

  • Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395

    Article  CAS  Google Scholar 

  • Hamel C, Hanson K, Selles F, Cruz AF, Lemke R, McConkey B, Zentner R (2006) Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol Biochem 38:2104–2116. doi:10.1016/j.soilbio.2006.01.011

    Article  CAS  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285. doi:10.1023/A:1026500810385

    Article  CAS  Google Scholar 

  • Hodge A (2003a) N capture by Plantago lanceolata and Brassica napus from organis material: The influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. J Exp Bot 57:401–411. doi:10.1093/jxb/eri280

    Article  Google Scholar 

  • Hodge A (2003b) Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol 157:303–314. doi:10.1046/j.1469-8137.2003.00662.x

    Article  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299. doi:10.1038/35095041

    Article  CAS  PubMed  Google Scholar 

  • Huberty CJ (1994) Applied discriminant analysis. Wiley, New York, p 466

    Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Nitrogen transformations and ecosystem services. Annu Rev Plant Biol 59:341–363. doi:10.1146/annurev.arplant.59.032607.092932

    Article  CAS  PubMed  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160:1–9. doi:10.1007/BF00150340

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1992) Re-sorption of organic components by roots of Zea mays L. and its consequences in the rhizosphere. Plant Soil 143:259–266. doi:10.1007/BF00007881

    Article  CAS  Google Scholar 

  • Kawashima H, Konzaki N, Kobayashi M, Shimizu S (1996) Biosynthesis of trans fatty acids in a fungus Cladosporium sphaerospermium and some bacteria isolated from fish viscera. Biosci Biotechnol Biochem 60:1888–1890

    Article  CAS  Google Scholar 

  • Koske RE, Gemma JN (2000) A modified procedure for staining roots to detect AM mycorrhizas. Mycol Res 92:486–489

    Article  Google Scholar 

  • Leake JR, Read DJ (1990) Proteinase activity in mycorrhizal fungi. II. The effects of mineral and organic nitrogen sources on induction of extracellular proteinase in Hymenoscyphus ericae (Read) Korf & Kernan. New Phytol 116:123–128. doi:10.1111/j.1469-8137.1990.tb00517.x

    Article  CAS  Google Scholar 

  • Li H, Smith SE, Holloway RE, Zhu Y, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543. doi:10.1111/j.1469-8137.2006.01846.x

    Article  CAS  PubMed  Google Scholar 

  • Lioussanne L, Beauregard MS, Hamel C, Jolicoeur M, St-Arnaud M (2008) Interactions between arbuscular mycorrhiza and soil microorganisms. In: Khasa D, Piché Y, Coughlan A (eds) Advances in mycorrhizal science and technology. NRC, Ottawa

    Google Scholar 

  • Liu A, Hamel C, Hamilton R, Smith D (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157–166. doi:10.1023/A:1004777821422

    Article  CAS  Google Scholar 

  • Liu A, Plenchette C, Hamel C (2007) Soil nutrient and water providers: How arbuscular mycorrhizal mycelia support plant performance in a resource-limited world. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production. Haworth, Binghamton, pp 38–66

    Google Scholar 

  • Mader P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A (2000) Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161. doi:10.1046/j.1469-8137.2000.00615.x

    Article  Google Scholar 

  • Marschner P, Crowley D, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16 S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302. doi:10.1007/s00572-001-0136-7

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Crowley DE (1996a) Physiological activity of a bioluminescent Pseudomonas fluorescens (strain 2–79) in the rhizosphere of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Soil Biol Biochem 28:869–876. doi:10.1016/0038-0717(96)00072-7

    Article  CAS  Google Scholar 

  • Marschner P, Crowley DE (1996b) Root colonization of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum) by Pseudomonas fluorescens 2-79RL. New Phytol 134:115–122. doi:10.1111/j.1469-8137.1996.tb01151.x

    Article  Google Scholar 

  • Milbury WF, Stack VT, Doll FL (1970) Simultaneous determination of total phosphorus and total Kjeldahl nitrogen in activated sludge with the Technicon continuous digestor system. In: Technicon International Congress, Advances in Automatic Analysis, Industrial Analysis, pp. 299–304

  • Nakano A, Takahashi K, Kimura M (1999) The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. Mycorrhiza 9:41–47. doi:10.1007/s005720050261

    Article  CAS  Google Scholar 

  • Newman EI (1966) A method for estimating total length of root in a sample. J Appl Ecol 3:139–145. doi:10.2307/2401670

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411. doi:10.1016/S0169-5347(00)89157-0

    Article  CAS  PubMed  Google Scholar 

  • Noel RJ, Hambleton LG (1976) Collaborative study of a semi-automated method for the determination of crude protein in animal feeds. J Assoc Off Anal Chem 59:134–140

    CAS  PubMed  Google Scholar 

  • Petersen SO, Klug MJ (1994) Effects of sieving, storage, and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Appl Environ Microbiol 60:2421–2430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Posta K, Marschner H, Römheld V (1994) Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 5:119–124. doi:10.1007/BF00202343

    Article  CAS  Google Scholar 

  • Ravnskov S, Nybroe OLE, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113–122. doi:10.1046/j.1469-8137.1999.00374.x

    Article  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391. doi:10.1007/BF01972080

    Article  Google Scholar 

  • Sawers RJH, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97

    Article  CAS  PubMed  Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563. doi:10.1016/S0038-0717(03)00015-4

    Article  CAS  Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular–arbuscular mycorrhizas. Can J Microbiol 33:1069–1073

    Article  Google Scholar 

  • Spring S, Schulze R, Overmann J, Schleifer KH (2000) Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiol Rev 24:573–590. doi:10.1111/j.1574-6976.2000.tb00559.x

    Article  CAS  PubMed  Google Scholar 

  • St. John TV, Coleman DC, Reid CPP (1983) Association of vesicular–arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64:957–959. doi:10.2307/1937216

    Article  Google Scholar 

  • Stanton NL (1988) The Underground in Grasslands. Annu Rev Ecol Syst 19:573–589. doi:10.1146/annurev.es.19.110188.003041

    Article  Google Scholar 

  • Sundh I, Nilsson M, Borga P (1997) Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles. Appl Environ Microbiol 63:1476–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963. doi:10.1111/j.1365-2435.2008.01402.x

    Article  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254. doi:10.1111/j.1365-3040.2005.01360.x

    Article  CAS  Google Scholar 

  • Tinker PBH, Nye PH (2000) Solute transport in the rhizosphere. Oxford Univ. Press, Oxford

    Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304. doi:10.1111/j.1574-6941.2007.00337.x

    Article  CAS  PubMed  Google Scholar 

  • Varley JA (1966) Automated method for the determination of nitrogen, phosphorus and potassium in plant material. Analyst (Lond) 91:119–126. doi:10.1039/an9669100119

    Article  CAS  Google Scholar 

  • Varma A (1999) Hydrolytic enzymes from arbuscular mycorrhizae: the current status. In: Varma A, Hock B (eds) Mycorrhiza, 2nd edn. Springer, Berlin, pp 373–389

    Chapter  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yolande Dalpé for providing the AM fungal species. This work was supported by a grant from AAFC-GAPS #348.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atul-Nayyar, A., Hamel, C., Hanson, K. et al. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19, 239–246 (2009). https://doi.org/10.1007/s00572-008-0215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-008-0215-0

Keywords

Navigation