Skip to main content
Log in

Seedling mycorrhizal type and soil chemistry are related to canopy condition of Eucalyptus gomphocephala

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The health of Eucalyptus gomphocephala is declining within its natural range in south-western Australia. In a pilot study to assess whether changes in mycorrhizal fungi and soil chemistry might be associated with E. gomphocephala decline, we set up a containerized bioassay experiment with E. gomphocephala as the trap plant using intact soil cores collected from 12 sites with E. gomphocephala canopy condition ranging from healthy to declining. Adjacent soil samples were collected for chemical analysis. The type of mycorrhiza (arbuscular or ectomycorrhizal) formed in containerized seedlings predicted the canopy condition of E. gomphocephala at the sites where the cores were taken. Ectomycorrhizal fungi colonization was higher in seedling roots in soil taken from sites with healthy canopies, whereas colonization by arbuscular mycorrhizal fungi dominated in roots in soil taken from sites with declining canopies. Furthermore, several soil chemical properties predicted canopy condition and the type of mycorrhizal fungi colonizing roots. These preliminary findings suggest that large-scale studies should be undertaken in the field to quantify those ectomycorrhiza (ECM) fungi sensitive to E. gomphocephala canopy decline and whether particular ECM fungi are bioindicators of ecosystem health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzales P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Article  Google Scholar 

  • Alzetta C, Scattolin L, Scopel C, Accordi SM (2012) The ectomycorrhizal community in urban linden trees and its relationship with soil properties. Trees 26:751–767

    Article  Google Scholar 

  • Amaranthus M P 1998 The importance and conservation of ectomycorrhizal fungal diversity in forest ecosystems: lessons from Europe and the Pacific Northwest. United States Department of Agriculture. Forest Service. Pacific Northwest Research Station General Technical Report PNW-QTR-431

  • Archibald R, Bradshaw J, Bowen B, Close D, McCaw L, Drake P, Hardy G (2010) Understorey thinning and burning trials are needed in conservation reserves: the case of tuart (Eucalyptus gomphocephala Dc). Ecol Manage Restor 11:108–112

    Article  Google Scholar 

  • Bell RW, Dell B (2008) Micronutreints for sustainable food, feed, fibre and bioenergy production. International Fertlizer Industry Association, Paris, France

    Google Scholar 

  • Bellgard SE, Williams SE (2011) Response of mycorrhizal diversity to current climatic changes. Divers 3:8–90

    Article  CAS  Google Scholar 

  • Blom JM, Vannini A, Vettraino AN, Hale MD, Godbold DL (2009) Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 20:25–38

    Article  PubMed  Google Scholar 

  • Brundrett MC (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313

    Article  Google Scholar 

  • Brundrett M, Abbott LK (1994) Mycorrhizal fungus propagules in the jarrah forest. I. Seasonal study of inoculum levels. New Phytol 127:539–546

    Article  Google Scholar 

  • Brundrett M, Abbott L K, Jasper D A and Ashwath N 1995 Mycorrhizal associations in disturbed and natural habitats in tropical Australia. In mycorrhizas for plantation forestry in Asia, ACIAR Proceedings No. 62 M Brundrett, B Dell, N Malajczuk and G Mingqin (eds). pp 34–40. Guangdong, China

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhiza in forestry and agriculture. Australian Centre for International Agricultural Research. Canberra, Australia

    Google Scholar 

  • Bureau of Meteorology 2012 Climate averages. Australian Commonwealth Bureau of Meteorology. http://reg.bom.gov.au/tmp/cdio/IDCJAC0002_009977. Accessed 15 April 2012

  • Cacceta P A, Allen A and I W 2000 The land monitor project. Proceedings of the 10th Australasian remote sensing and photogrammetry conference. In Australasian remote sensing and photogrammetry conference. pp 97–107. Adelaide, Australia

  • Cai YF, Barber P, Dell B, O'Brien P, Williams N, Bowen B, Hardy G (2010) Soil bacterial functional diversity is associated with the decline of Eucalyptus gomphocephala. For Ecol Manage 260:1047–1057

    Article  Google Scholar 

  • Campos D, da Silva M, da Luz J, Telesfora R, Kasuya M (2011) Mycorrhizal colonizations in eucalypt plantations. Rev Arvore 35:965–974

    Article  CAS  Google Scholar 

  • Causin R, Montecchio L, Accordi SM (1996) Probability of ectomycorrhizal infection in a declining stand of common oak. Ann Sci For 53:743–752

    Article  Google Scholar 

  • Chen YL, Brundrett MA, Dell B (2000a) Effect of ectomycorrhizas and vesicular-arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytol 146:545–556

    Article  Google Scholar 

  • Chen YL, Gong MQ, DaPing X, Zhong CL, Wang FZ, Chen Y (2000b) Screening and inoculant efficacy of Australian ectomycorrhizal fungi on Eucalyptus urophylla in field. For Res 13:569–576

    Google Scholar 

  • Chen YL, Kang LH, Malajczuk N, Dell B (2006) Selecting ectomycorrhizal fungi for inoculating plantations in south China: effect of Scleroderma on colonization and growth of exotic Eucalyptus globulus, E. urophylla, Pinus elliottii, and P. radiata. Mycorrhiza 16:251–259

    Article  PubMed  Google Scholar 

  • Clark KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Close DC, Davidson JN, Johnson DW, Abrams MD, Hart SC, Lunt ID, Archibald RD, Horton B, Adams MA (2009) Premature decline of Eucalyptus and altered ecosystem processes in the absence of fire in some Australian forests. Bot Rev 75:191–202

    Article  Google Scholar 

  • Cudlin P, Kieliszewska-Rokicka B, Rudawska M, Grebenc T, Alberton O, Lehto T, Bakker MR, Børja I, Konôpka B, Leski T, Kraigher H, Kuyper TW (2007) Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosyst 141:406–425

    Article  Google Scholar 

  • Czerniakowski B, Crnov R, Smith IW, Luck JE (2006) Soil properties associated with tree decline "Mundulla Yellows". Plant Soil 285:197–206

    Article  CAS  Google Scholar 

  • Dell B and Malajczuk N 1995 Fertilizer requirements for ectomycorrhizal eucalypts in forest nurseries and field plantings in Southern China. In mycorrhizal research for forestry in Asia. Eds. M Brundrett, B Dell, N Malajczuk and G Mingqin. pp 96–100. ACIAR Proceedings No.62, Guangdong, China

  • Egerton-Warburton L, Allen MF (2001) Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11:283–290

    Article  Google Scholar 

  • Elridge K, Davidson J, Hardwood C, van Wyk G (1994) Eucalypt domestication and breeding. Clarendon, Oxford

    Google Scholar 

  • Erland S, Taylor AES (2002) Diversity of ecto-mycorrhizal fungal communities in relation to the abiotic environment. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer-Verlag Berlin Heidelberg, New York, pp 163–200

    Chapter  Google Scholar 

  • Evans B, Lyons TJ, Barber PA, Stone C, Hardy G (2012a) Dieback classification modelling using high resolution digital multi spectral imagery and in situ assessments of crown condition. Remote Sens Lett 3:541–550

    Article  Google Scholar 

  • Evans B, Lyons T J, Barber P A, Stone C and Hardy G 2012b Enhancing a eucalypt crown condition indicator driven by high spatial and spectral resolution remote sensing imagery. J Appl Remote Sens 6:063605 (1–15)

  • Field A (2009) Discovering statistics using SPSS. SAGE Publication Ltd, United Kingdom

    Google Scholar 

  • Grigg A, Close DC, Lambers H, Ruthrof KX, Dixon KW (2009) Ecophysiology of Eucalyptus marginata and Corymbia calophylla in decline in an urban parkland. Austral Ecol 34:499–507

    Article  Google Scholar 

  • Group TR (2002) Status report of tuart conservation and protection. Government of Western Australia, Perth, Australia, 45p

    Google Scholar 

  • Hammer Ø, Harper D A T and Ryan P D 2001 PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4: 9 pp

  • Horsley SB, Long RP, Bailey SW, Hallet RA, Hall TJ (2000) Factors associated with the decline disease of sugar maple on the Allegheny Plateau. Can J For Res 30:1365–1378

    Article  CAS  Google Scholar 

  • Hugget BA, Shaberg PG, Hawley GJ, Eagar C (2007) Long-term addition calcium increases growth release, wound closure, and health of sugar maple (Accer saccharum) trees at the Hubbard Brook experimental forest. Can J For Res 37:1692–1700

    Article  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1991) The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118:471–476

    Article  Google Scholar 

  • Juice MS, Fahey TJ, Siccama TG, Driscoll CT, Denny EG, Eagar C, Cleavitt NL, Minocha R, Richardson AD (2006) Response of sugar maple to calcium addition to northern hardwood forest. Ecology 87:1267–1280

    Article  PubMed  Google Scholar 

  • Jurkis V (2005) Eucalypt decline in Australia, and general concept of tree decline and dieback. For Ecol Manage 215:1–20

    Article  Google Scholar 

  • Karliński L, Rudawska M, Kieliszewska-Rokicka B, Leski T (2010) Relationship between genotype and soil environment during colonization of poplar roots by mycorrhizal and endophytic fungi. Mycorrhiza 20:315–324

    Article  PubMed  Google Scholar 

  • Keighery G J 2002 The flora of tuart woodlands. In: Keighery B J and V M Longman V M (eds) Tuart (Eucalyptus gomphocephala) and tuart communities. Wildflower of Society of Western Australia, Perth, Western Australia, pp 147–179

  • Kile G, Turnbull C, Podger F (1981) Effect of regrowth dieback on some properties of Eucalyptus obliqua trees. Aust For Res 11:55–62

    Google Scholar 

  • Kogelmann WJ, Sharpe WE (2006) Soil acidity and manganese in declining and non declining sugar maple stands in Pennsylvania. J Environ Qual 35:433–441

    Article  PubMed  CAS  Google Scholar 

  • Lapeyrie FF, Chilvers GA (1985) An endomycorrhiza-ectomycorrhiza succession associated with enhanced growth of Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytol 100:93–104

    Article  Google Scholar 

  • Malajczuk N, Grove TS, L B N, Dell B (1994) Ectomycorrhizas and nutrients: their importance to eucalypts in China. In Australian tree species research in China. ACIAR, Canberra, pp 32–139

    Google Scholar 

  • Markkola A, Kuikka K, Rautio P, Harma E, Roltto M, Tuomi J (2004) Defoliation increases carbon limitation in ectomycorrhizal symbiosis of Betula pubescens. Oecologia 140:234–240

    Article  PubMed  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Montecchio L, Causin R, Rossi S, Accordi SM (2004) Changes in ectomycorrhizal diversity in a declining Quercus ilex coastal forest. Phytopathol Mediterr 43:26–34

    Google Scholar 

  • Na Bhadalung N, Suwanarit A, Dell B, Nopamorndi O, Thamchaipenet A, Rungchuang J (2005) Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under maize cropping system. Plant Soil 270:371–382

    Article  Google Scholar 

  • Newbound M, Bennet LT, Tibbits J, Kasel S (2012) Soil chemical properties, rather than landscape context, influence woodland fungal communities along an urban–rural gradient. Austral Ecol 37:236–247

    Article  Google Scholar 

  • Oliveira VL, Schmidt VDB, Bellei MM (1997) Patterns of arbuscular- and ecto- mycorrhizal colonization of Eucalyptus dunnii in southern Brazil. Ann Sci For 54:473–481

    Article  Google Scholar 

  • Pagano MC, Scotti MR (2008) Arbuscular and ectomycorrhizal colonization of two Eucalyptus species in semiarid Brazil. Mycoscience 49:379–384

    Article  CAS  Google Scholar 

  • Parsons RF, Uren NC (2007) The relationship between lime chlorosis, trace elements and Mundulla Yellows. Australas. Plant Pathol 36:415–418

    CAS  Google Scholar 

  • Peter M, Ayer F, Cudlin P, Egli S (2008) Below ground ectomycorrhizal communities in three Norway spruce stands with different degrees of decline in the Czech Republic. Mycorrhiza 18:157–169

    Article  PubMed  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Portlock C, Koch A, Wood HP, Dutton S (1993) Yalgorup national park draft management plan. Department of conservation and land management. Como, Western Australia

    Google Scholar 

  • Power SA, Ashmore R (1996) Nutrient relations and root mycorrhizal status of healthy and declining beech (Fagus sylvatica L) in southern Britain. Water Air Soil Pollut 86:317–333

    Article  CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Robinson R (2008) Forest health surveillance in Western Australia: a summary of major activities from 1997 to 2006. Aust For J 71:202–211

    Article  Google Scholar 

  • Santos VL, Muchovej RM, Borges AC, Neves JCL, Kasuya MCM (2001) Vesicular-arbuscular-ectomycorrhiza succession in seedlings of Eucalyptus spp. Braz J Microbiol 32:81–86

    Article  Google Scholar 

  • Scattolin L, Montecchio L, Mosca E, Agerer R (2008) Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands. Eur J For Res 127:347–357

    Article  Google Scholar 

  • Scattolin L, Maso ED, Accordi SM, Sella L, Montecchio L (2012) Detecting asymptomatic ink-diseased chestnut trees by the composition of the ectomycorrhizal community. For Pathol. doi:10.1111/j.1439-0329.2012.00784.x

  • Schaberg PG, Tilley JW, Hawley GJ, DeHayes DH, Bailey SW (2006) Associations of calcium and aluminum with the growth and health of sugar maple trees in Vermont. For Ecol Manage 223:159–169

    Article  Google Scholar 

  • Scheiner S M 2001 Theories, hypotheses and statistics. In: Scheiner S M and Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, Oxford.

  • Scott PM, Burgess TI, Barber PA, Shearer BL, Stukely MJC, Hardy GESJ, Jung T (2009) Phytophthora multivora sp. nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia. Persoonia 22:1–13

    Article  PubMed  CAS  Google Scholar 

  • Scott PM, Jung T, Shearer BL, Barber P, Calver M, Hardy GESJ (2011) Pathogenicity of Phytophthora multivora to Eucalyptus gomphocephala and Eucalyptus marginata. For Pathol. doi:10.1111/j.1436-0329.2011.00753x

  • Scott P M, Shearer B L, Barber P A and Hardy G E S 2012 Relationship between the crown health, fine root and ectomycorrhizae density of declining Eucalyptus gomphocephala Australas. Plant Pathol. In published

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier, New York, USA

    Google Scholar 

  • St. Clair SB, Carison JE, Lynch JP (2005) Evidence for oxidative stress in sugar maple stands growing on acidic, nutrient imbalanced forest soils. Oecologia 45:258–269

    Google Scholar 

  • Stone C, Haywood A (2006) Assessing canopy health of native eucalypt forest. Ecol Manage Restore 71:24–30

    Article  Google Scholar 

  • Swaty RL, Decker RJ, Whitham TG, Gehring CA (2004) Ectomycorrhizal abundance and community composition shifts with drought: prediction from tree rings. Ecology 85:1072–1084

    Article  Google Scholar 

  • Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AFS (2006) Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytol 170:873–884

    Article  PubMed  CAS  Google Scholar 

  • Tommerup IC (1988) The vesicular-arbuscular mycorrhizas. Adv Plant Pathol 6:81–89

    Google Scholar 

  • USDA 2005 Phase 3 field guide-crowns: measurements and sampling, Version 4. 20p.

  • van der Heijden MGA, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungi diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Wardlaw T (1989) Management of Tasmanian forests affected by regrowth dieback. New Zeal J For Sci 19:265–276

    Google Scholar 

  • Wilmot TR, Ellsworth DS, Tyree MT (1995) Relationships among crown condition, growth, and stand nutrition in seven northern Vermont sugarbushes. Can J For Res 25:386–397

    Article  Google Scholar 

  • Xu D, Dell B, Malajczuk N, Gong M (2001) Effects of P fertilization and ectomycorrhizal fungal inoculation on early growth of eucalypt plantations in southern China. Plant Soil 233:47–57

    Article  CAS  Google Scholar 

  • Zambolim L, Barros NF (1982) Vesicular-arbuscular mycorrhiza occurrence in Eucalyptus spp. in Viçosa region, Minas Gerais (in Portuguese). Rev Árvore 6:95–97

    Google Scholar 

Download references

Acknowledgments

We thank the Australian Research Council for project funding. We also thank the anonymous reviewers for their feedback to improve the manuscript. The work of Lily Ishaq is supported by Indonesian Higher Education PhD scholarship and Murdoch University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giles E. St. J. Hardy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishaq, L., Barber, P.A., Hardy, G.E.S.J. et al. Seedling mycorrhizal type and soil chemistry are related to canopy condition of Eucalyptus gomphocephala . Mycorrhiza 23, 359–371 (2013). https://doi.org/10.1007/s00572-012-0476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-012-0476-5

Keywords

Navigation