Skip to main content
Log in

Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: nutrient uptake and ion distribution within root tissues

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The effects of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae, and a phosphate-solubilizing microorganism (PSM), Mortierella sp., and their interactions, on nutrient (N, P and K) uptake and the ionic composition of different root tissues of the halophyte Kosteletzkya virginica (L.), cultured with or without NaCl, were evaluated. Plant biomass, AM colonization and PSM populations were also assessed. Salt stress adversely affected plant nutrient acquisition, especially root P and K, resulting in an important reduction in shoot dry biomass. Inoculation of the AM fungus or/and PSM strongly promoted AM colonization, PSM populations, plant dry biomass, root/shoot dry weight ratio and nutrient uptake by K. virginica, regardless of salinity level. Ion accumulation in root tissues was inhibited by salt stress. However, dual inoculation of the AM fungus and PSM significantly enhanced ion (e.g., Na+, Cl, K+, Ca2+, Mg2+) accumulation in different root tissues, and maintained lower Na+/K+ and Ca2+/Mg2+ ratios and a higher Na+/Ca2+ ratio, compared to non-inoculated plants under 100 mM NaCl conditions. Correlation coefficient analysis demonstrated that plant (shoot or root) dry biomass correlated positively with plant nutrient uptake and ion (e.g., Na+, K+, Mg2+ and Cl) concentrations of different root tissues, and correlated negatively with Na+/K+ ratios in the epidermis and cortex. Simultaneously, root/shoot dry weight ratio correlated positively with Na+/Ca2+ ratios in most root tissues. These findings suggest that combined AM fungus and PSM inoculation alleviates the deleterious effects of salt on plant growth by enabling greater nutrient (e.g., P, N and K) absorption, higher accumulation of Na+, K+, Mg2+ and Cl in different root tissues, and maintenance of lower root Na+/K+ and higher Na+/Ca2+ ratios when salinity is within acceptable limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Fattah GM, Asrar AWA (2012) Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol Plant 34:267–277

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Hammad R (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. J Plant Nutr 24:1311–1323

    Article  CAS  Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell Scientific Publications, London

    Google Scholar 

  • Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93:227–236

    Article  Google Scholar 

  • Asghari HR, Marschner P, Smith SE, Smith FA (2005) Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 273:245–256

    Article  CAS  Google Scholar 

  • Babu AG, Reddy MS (2011) Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds. Water Air Soil Pollut 219:3–10

    Article  CAS  Google Scholar 

  • Blits KC, Gallagher JL (1990) Salinity tolerance of Kostelelzkya virginica: II. Root growth, lipid content, iron and water relations. Plant Cell Environ 13:419–425

    Article  CAS  Google Scholar 

  • Campanelli A, Ruta C, Mastro GD, Morone-Fortunato I (2012) The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis. doi:10.1007/s13199-012-0191-1

    Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with AM mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Cruz C, Green JJ, Watson CA, Wilson F, Martins-Loução MA (2004) Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14:177–184

    Article  CAS  PubMed  Google Scholar 

  • Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Loução MA, Jakobsen I (2007) Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhiza fungi. Plant Physiol 144:782–792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano J (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. doi:10.1111/pce.12082

    PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot-Lond 104:1263–1280

    Article  CAS  Google Scholar 

  • Frechill S, Lasa B, Ibarretxe L, Lamsfus C, Aparicio Trejo P (2001) Pea response to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regul 35:171–179

    Article  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2011) Effect of mycorrhizal inoculation on growth, nitrogen fixation, and nutrient uptake in Cicer arietinum (L.) under salt stress. Turk J Agric For 35:205–214

    CAS  Google Scholar 

  • Ghanem ME, Han RM, Classen B, Quetin-Leclerq J, Mahy G, Ruan CJ, Qin P, Pérez-Alfocea F, Lutts S (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. J Plant Physiol 167:382–392

    Article  CAS  Google Scholar 

  • Gilliham M, Tester M (2005) The regulation of anion loading to the maize root xylem. Plant Physiol 137:819–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giri B, Kapoor R, Agarwal L, Mukerji KG (2004) Pre-inoculation with arbuscular mycorrhizae helps Acacia auriculiformis grow in degraded Indian wasteland soil. Commun Soil Sci Plant Anal 35:193–204

    Article  CAS  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji K (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Syversten JP (1984) Influence of vesicular arbuscular mycorrhiza on the hydraulic conductivity of roots of two Citrus rootstocks. New Phytol 97:277–284

    Article  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity–mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  CAS  Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicas acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In Salt stress in plants. Springer, New York, 301–354

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method of growing plants without soil. University of California Berkeley Coll Agric Circ 347

  • Kageyama SA, Mandyam KG, Jumpponen A (2008) Diversity, function and potential applications of the root-associated endophytes. In Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, ecophisilogy, structure and systematics. Edited by A. Varma. Springer, Heidelberg, pp 29–57

  • Li ZG, Luo YM, Teng Y (2008) Research method of soil and environment microorganism. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Manchanda G, Garg N (2007) Endomycorrhizal and rhizobial symbiosis: how much do they share? J Plant Interact 2:79–88

    Article  CAS  Google Scholar 

  • Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol 334:564–571

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plant, 2nd edn. Academic, New York

    Google Scholar 

  • Marschner P (2012) Rhizosphere biology. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, USA, pp 369–388

    Chapter  Google Scholar 

  • Mcgonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Neto D, Carvalho LM, Cruz C, Martins-Loução MA (2006) How do mycorrhizas affect C and N relationships in flooded Aster tripolium plants? Plant Soil 279:51–63

    Article  CAS  Google Scholar 

  • Omar S (1998) The role of rock-phosphate-solubilizing fungi and vesicular-arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microb Biotechnol 14:211–218

    Article  CAS  Google Scholar 

  • Osorio N, Habte M (2001) Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res Manag 15:263–274

    Article  CAS  Google Scholar 

  • Osorio N, Habte M (2013) Synergistic effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in an Oxisol fertilized with rock phosphate. Botany 91:274–281

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and VA mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pitman M, Läuchli A (2004) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge S (eds) Salinity: environment–plants–molecules. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcán R (2009) Arbuscular mycorrhizal fungi increase growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol. doi:10.1016/j.jplph.2009.02.010

    PubMed  Google Scholar 

  • Rinaldelli E, Mancuso S (1996) Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions: 1. Short term electro physiological and long term vegetative salt effects. Adv Hortic Sci 10:126–134

    Google Scholar 

  • Ruan C, Qin P, He Z, Xie M (2005) Concentrations of major and minor mineral elements in different organs of Kosteletzkya virginica and saline soils. J Plant Nutr 28:1191–1200

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2009) Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Can J Microbiol 55:879–886

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kapoor KK (1999) Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soils 28:139–144

    Article  CAS  Google Scholar 

  • Srividya S, Soumya S, Pooja K (2010) Influence of environmental factors and salinity on phosphate solubilization by a newly isolated Aspergillus niger F7 from agricultural soil. Afr J Biotechnol 8:1864–1870

    Google Scholar 

  • Toro M, Azcon R, Herrera R (1996) Effects on yield and nutrition of mycorrhizal and nodulated Pueraria phaseolides exerted by P-solubilizing rhizobacteria. Biol Fertil Soils 21:23–29

    Article  Google Scholar 

  • Wang FY, Liu RJ (2001) A preliminary survey of arbuscular mycorrhizal fungi in saline alkaline soil of the Yellow river delta. Biodivers Sci 9:389–392

    Google Scholar 

  • Wild A (1988) (Ed.) Russell’s soil conditions and plant growth. 11th edn. Longman, Harlow

  • Wu QS, Zou YN, Liu W, Ye XE, Zai HE, Zhao LJ (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ 56:470–475

    CAS  Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkaki U (2000) Advances in chloride nutrition. Adv Agron 68:96–150

    Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249

    Article  PubMed  Google Scholar 

  • Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram–Bradyrhizobium symbiosis. Turk J Agric For 30:223–230

    CAS  Google Scholar 

  • Zandavalli RB, Dillenburg LR, Souza PVD (2004) Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Appl Soil Ecol 25:245–255

    Article  Google Scholar 

  • Zhang YF, Wang P, Yang YF, Bi Q, Tian SY, Shi XW (2011a) Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline–alkaline soil: implication on vegetation restoration of extremely degraded land. J Arid Environ 75:773–778

    Article  Google Scholar 

  • Zhang HS, Wu X, Li G, Qin P (2011b) Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils 47:543–554

    Article  CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a China Postdoctoral Science Foundation funded project (2012 M511728) and National Science Foundation of China (31370533). We are grateful to two anonymous referees for their constructive critical review of a previous draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Qin or Shao Ming Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H.S., Qin, F.F., Qin, P. et al. Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: nutrient uptake and ion distribution within root tissues. Mycorrhiza 24, 383–395 (2014). https://doi.org/10.1007/s00572-013-0546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0546-3

Keywords

Navigation