Skip to main content
Log in

Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed A, Hasnain A, Akhtar S, Hussain A, Yasin G, Wahid A, Mahmood S (2013) Antioxidant enzymes as bio-markers for copper tolerance in safflower (Carthamus tinctorius L.). Afr J Biotechnol 9:5441–5444

    Google Scholar 

  • Aghababaei F, Raiesi F, Hosseinpur AR (2014) The significant contribution of mycorrhizal fungi and earthworms to maize protection and phytoremediation in Cd-polluted soils. Pedobiologia 57:223–233

    Article  Google Scholar 

  • Alaoui-Sosse B, Genet P, Vinit-Dunand F, Toussaint M-L, Epron D, Badot P-M (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166:1213–1218

    Article  CAS  Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell, London

    Google Scholar 

  • Alsokari S (2009) Modulatory role of kinetin on photosynthetic characteristics, yield and yield attributes of cadmium-treated Sorghum bicolor plants. J Appl Sci Res 5:2383–2396

    CAS  Google Scholar 

  • Amir H, Lagrange A, Hassaϊne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Cooper enzymes in isolated chloroplasts. Phenol-oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auge RM, Moore JL, Sylvia DM, Cho K (2004) Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature. Mycorrhiza 14:85–92

    Article  PubMed  Google Scholar 

  • Baslam M, Esteban R, García-Plazaola JI, Goicoechea N (2013) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Micobiol Biotechnol 97:3119–3128

    Article  CAS  Google Scholar 

  • Cammack R, Fernandez VM, Schneider K (1988) Nickel in hydrogenases from sulphate reducing, photosynthetic, and hydrogen oxidizing bacteria. In: Lancaster JR jr (ed) The bioorganic chemistry of nickel. Verlag-Chemie, Weinheim, pp 167–190

  • Carpio LA, Davies FT, Arnold MA (2005) Arbuscular mycorrhizal fungi, organic and inorganic controlled-release fertilizers: effect on growth and leachate of container-grown bush morning glory (Ipomoea carnea ssp. fistulosa) under high production temperatures. J Am Soc Hortic Sci 130:131–139

    Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cicatelli A, Torrigiani P, Todeschini V, Biondi S, Castiglione S, Lingua G (2014) Arbuscular mycorrhizal fungi as a tool to ameliorate the phytoremediation potential of poplar: biochemical and molecular aspects. iForest 7:333–341

    Article  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies F, Olalde-Portugal V, Aguilera-Gomez L, Alvarado M, Ferrera-Cerrato R, Boutton T (2002) Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico. Sci Hortic 92:347–359

    Article  Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786

    Article  CAS  Google Scholar 

  • Demir S (2004) Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turk J Biol 28:85–90

    Google Scholar 

  • Dong Y, Zhu Y-G, Smith FA, Wang Y, Chen B (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut 155:174–181

    Article  PubMed  CAS  Google Scholar 

  • Doubkova P, Sudova R (2014) Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis. Mycorrhiza 24:209–217

    Article  PubMed  CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2007) Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J Plant Physiol 164:364–366

    Article  PubMed  CAS  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    Article  PubMed  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremedialion. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chavez M (2000) Arbuscular mycorrhizal fungi from As/Cu polluted soils. Dissertation, University of Reading, UK

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544

    Article  PubMed  CAS  Google Scholar 

  • Gussarsson M (1994) Cadmium-induced alterations in nutrient composition and growth of Betula pendula seedlings: the significance of fine roots as a primary target for cadmium toxicity. J Plant Nutr 17:2151–2163

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Choudhuri MA (1982) Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol 90:477–484

    Article  CAS  Google Scholar 

  • Jianfeng H, Xiangui L, Rui Y, Jiang Q, Yufang S (2009) Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J Environ Sci 21:1214–1220

    Article  CAS  Google Scholar 

  • Kagan VE, Kisin ER, Kawai K et al (2002) Towards mechanism based antioxidant interventions. Ann NY Acad Sci 959:188–198

    Article  PubMed  CAS  Google Scholar 

  • Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161

    Article  PubMed  CAS  Google Scholar 

  • Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  CAS  Google Scholar 

  • Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28

    Article  PubMed  CAS  Google Scholar 

  • Latef AAHA (2011) Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza 21:495–503

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Donghwan S, Won-yong S, Inhwan H, Youngsook L (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol 54:805–815

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Muller-Röber B, Schulz B (2002) Multifunctionality of plant ABC transporters—more than just detoxifiers. Planta 214:345–355

    Article  PubMed  CAS  Google Scholar 

  • Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes (correlation with copper tolerance). Plant Physiol 109:945–954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  PubMed  Google Scholar 

  • Orlowska E, Przybylowicz W, Orlowski D, Turnau K, Mesjasz-Przybylowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Poll 159:3730–3738

    Article  CAS  Google Scholar 

  • Perotto S, Martino E (2001) Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? Minerva Biotechnol 13:55–63

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Poorter H, Villar R (1997) The fate of acquired carbon in plants: chemical composition and construction costs. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic, San Diego, pp 39–72

    Chapter  Google Scholar 

  • Porcel R, Barea JM, Ruiz‐Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Radisky D, Kaplan J (1999) Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274:4481–4484

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60

    Article  PubMed  CAS  Google Scholar 

  • Rivera‐Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi‐Pearson V (2002) Cadmium accumulation and buffering of cadmium‐induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Article  PubMed  Google Scholar 

  • Roitsch T, Ehneß R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Regul 32:359–367

    Article  CAS  Google Scholar 

  • SAS Institute Inc., (1999) SAS/STAT User's Guide. SAS Institute, Inc, Cary, NC

  • Singh K, Pandey S (2011) Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L. J Environ Biol 32:391–394

    PubMed  CAS  Google Scholar 

  • Singh R, Tripathi R, Dwivedi S, Kumar A, Trivedi P, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Soleimani M, Hajabbasi M, Afyuni M, Charkhabi A, Shariatmadari H (2009) Bioaccumulation of nickel and lead by Bermuda grass (Cynodon dactylon) and tall fescue (Festuca arundinacea) from two contaminated soils. Caspian J Environ Sci 7:59–70

    Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya codii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Van den Ende W, Peshev D (2013) Sugars as antioxidants in plants. In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, pp 285–307

  • Vivas A, Biró B, Németh T, Barea JM, Azcón R (2006) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704

    Article  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall J (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  PubMed  CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. B Environ Contam Toxicol 86:1–17

    Article  CAS  Google Scholar 

  • Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the research council of University of Shahrekord, SKU (Grant No. 160/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, L., Sabzalian, M.R. & Mostafavi pour, S. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea . Mycorrhiza 26, 67–76 (2016). https://doi.org/10.1007/s00572-015-0647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0647-2

Keywords

Navigation