Skip to main content
Log in

Anihypercholesterolemic effect of Semecarpus anacardium Linn nut milk extract in high-cholesterol-fed rats

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

The present study was carried to bring about the hypolipidemic effect of the drug Semecarpus anacardium Linn nut milk extract (SA) in hypercholesterolemia-induced rat model. Adult male Wistar rats were divided into four groups which included control rats, hypercholesterolemia-induced rats (high-cholesterol diet (4 %) for 30 days), hypercholesterolemic rats treated with the drug SA (200 mg/kg/b. wt oil), and the control rats treated with the drug SA (200 mg/kg/b. wt). Increased level of ROS and lipid peroxides were observed in hypercholesterolemic rats, whereas the levels of activities of antioxidant enzymes were found to be decreased in animals fed with a high-fat diet. Simultaneous administration of SA to these rats reverted back the changes to near-normal levels. Similarly, an increase in the expression of iNOS and LOX-1 were observed in high-fat-fed rats when compared to normal rats. Upon treatment with the drug SA, their expressions were brought back to near-normal levels. No adverse effects were observed in SA-alone treated group of rats, indicating its protective nature. The present study suggests that SA could play a protective role against hypercholesterolemia, thereby preventing coronary heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Braunwald E (1997) Shattuck lecture—cardiovascular medicine at the turn of the millennium: triumphs, concerns and opportunities. N Engl J Med 337:1360–1369

    Article  CAS  PubMed  Google Scholar 

  • Brown MS, Anderson RG, Goldstein JL (1983) Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell 32:663–667

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analls Biochem 162:156–159

    Article  CAS  Google Scholar 

  • Cooper AJ, Kristal BS (1997) Multiple roles of glutathione in the central nervous system. Biol Chem 378:793–802

    CAS  PubMed  Google Scholar 

  • Deepa PR, Varalakshmi P (2004) Protective effects of certoparin sodium, a low molecular weight heparin derivative, in experimental atherosclerosis. Clin Chim Acta 339:105–115

    Article  CAS  PubMed  Google Scholar 

  • Desai ID (1984) Vitamin E analysis methods for animal tissues. Methods Enzymol 105:138–147

    Article  CAS  PubMed  Google Scholar 

  • Devasagayam TP (1986) Lipid peroxidation in rat uterus. Biochim Biophys Acta 876:507–514

    Article  CAS  PubMed  Google Scholar 

  • Dugas TR, Morel DW, Harrison EH (2000) Novel cell culture medium for use in oxidation experiments provides insights into mechanisms of endothelial cell-mediated oxidation of LDL. In vitro Cell Dev Biol Anim 36:571–577

    CAS  PubMed  Google Scholar 

  • Eisenberg DA (1998) Cholesterol lowering in the management of coronary artery disease: the clinical implications of recent trials. Am J Med 104:2S–5S

    Article  CAS  PubMed  Google Scholar 

  • Formulary of Siddha Medicine (1972) 2nd edn. Madras: Indian Medicine Practitioners Cooperative Pharmacy and Stores Ltd, 197

  • Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426

    CAS  PubMed  Google Scholar 

  • Goldstein IM, Ostwald P, Roth S (1996) Nitric oxide: a review of its role in retinal function and disease. Vis Res 36:2979–2994

    Article  CAS  PubMed  Google Scholar 

  • Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57:737–769

    Article  CAS  PubMed  Google Scholar 

  • Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93:1087–1094

    Article  CAS  PubMed  Google Scholar 

  • Jung UJ, Kim HJ, Lee JS, Lee MK, Kim HO, Park EJ, Kim HK, Jeong TS, Choi MS (2003) Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr 22:561–568

    Article  CAS  PubMed  Google Scholar 

  • Kannel WB, Thorn TJ (1994) The incidence, prevalence and mortality of cardiovascular disease. In: Schlant RC, Alexander RWQ (eds) The heart. McGraw- Hill, New York, pp 185–197

    Google Scholar 

  • Khan HBH, Vinayagam KS, Ashwini S, Palanivelu S, Panchanatham S (2011) Anti diabetic and anti oxidant effect of Semecarpus anacardium Linn nut milk extract in a high fat diet STZ induced Type 2 diabetic rat model. J Diet Suppl 1–15

  • Khan HBH, Vinayagam KS, Moorthy BT, Palanivelu S, Panchanatham S (2011b) Anti-inflammatory and anti-hyperlipidemic effect of Semecarpus anacardium in a High fat diet: STZ-induced Type 2 diabetic rat model. Inflammopharmacol. doi:10.1007/s10787-011-0109-1

  • Khan HBH, Vinayagam KS, Madan P, Palanivelu S, Panchanatham S (2011c) Modulatory effect of Semecarpus anacardium against oxidative damages in DMBA-induced mammary carcinogenesis rat model. Comp Clin Pathol. doi:10.1007/s00580-011-1278-4

  • Khan HBH, Karvannan K, Deepa G, Palanivelu S, Panchanatham S (2012) Nephroprotective effect of Semecarpus anacardium on diabetic nephropathy in type 2 diabetic rats doi:10.1007/s00580-012-1639-7

  • Kok FJ, Kok G, van Poppel J, Melse E, Verheul EG, Schouten DH, Kruyssen HA (1991) Do antioxidants and polyunsaturated fatty acids have a combined association with coronary atherosclerosis? Atherosclerosis 86:85–90

    Article  CAS  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′- dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • Mehta JL, Chen J, Paul L (2006) Hermonat. Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 69:36–45

    Article  CAS  PubMed  Google Scholar 

  • Molcanyiov A, Stancakov A, Javorsk M, Tk I (2006) Beneficial effect of simvastatin treatment on LDL oxidation and antioxidant protection is more pronounced in combined hyperlipidemia than in hypercholesterolemia. Pharmacol Res 54:203–207

    Article  Google Scholar 

  • Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  • Murthy SSN (1992) New biflavanoid from Semecarpus anacardium Linn. Clin Acta Turc 20:33–37

    CAS  Google Scholar 

  • Nigdikar SV, Williams NR, Griffin BA, Howard AN (1998) Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo. Am J Clin Nutr 68:258–265

    CAS  PubMed  Google Scholar 

  • Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol 62:3–11

    Article  CAS  PubMed  Google Scholar 

  • Paik H-D, Park J-S, Park E (2005) Effects of bacillus polyfermenticus SCD on lipid and antioxidant metabolisms in rats fed a high-fat and high-cholesterol diet. Biol Pharm Bull 28:1270–1274

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Park YD, Han JM, Im KR, Lee BW, Jeong IY, Jeong TS, Lee WS (2006) Antiatherosclerotic and anti-inflammatory activities of catecholic xanthones and flavonoids isolated from Cudrania tricuspidata. Bioorg Med Chem Lett 16:5580–5583

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy S, Santanam N, Ramachandran S, Meilhac O (1999) Oxidants and antioxidants in atherogenesis. An appraisal. J Lipid Res 40:2143–2157

    CAS  PubMed  Google Scholar 

  • Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, Zachary MD, Remacle J (1990) Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 51:283–297

    Article  CAS  PubMed  Google Scholar 

  • Prasad K, Kalra J (1989) Experimental atherosclerosis and oxygen free radicals. Angiology 40:835–843

    Article  CAS  PubMed  Google Scholar 

  • Ramprasath VR, Shanthi P, Sachdanandam P (2006) Immunomodulatory and anti-inflammatory effects of Semecarpus anacardium Linn. nut milk extract in experimental inflammatory conditions. Biol Pharm Bull 29:693–700

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Mehrotra BN (1991) Compendium of Indian medicinal plants, vol 2: drug research perspective. Central Drug Research Institute, Lucknow, 369

    Google Scholar 

  • Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–395

    Article  CAS  PubMed  Google Scholar 

  • Subramanian R, Ramaswamy M, Wasan KM (2003) Role of lipid and lipoprotein metabolizing enzymes in the development of atherosclerosis. Indian J Exp Biol 41:14–25

    CAS  PubMed  Google Scholar 

  • Sudhahar V, Ashok Kumar S, Varalakshmi P (2006) Role of lupeol and lupeol linoleate on lipemic–oxidative stress in experimental hypercholesterolemia. Life Sci 78:1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Sujatha V, Sachdanandam P (2002) Recuperative effect of Semecarpus anacardium Linn. nut milk extract on carbohydrate metabolizing enzymes in experimental mammary carcinoma bearing rats. Phytother Res 16:S14–S18

    Article  PubMed  Google Scholar 

  • Surveswaran S, Cai YZ, Corke H, Sun M (2007) Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102:938–953

    Article  CAS  Google Scholar 

  • Torel J, Cillard J, Cillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry 25:383–385

    Article  CAS  Google Scholar 

  • Tripathi YB, Pandey RS (2004) Semecarpus anacardium nuts inhibit lipopolysaccharide induced NO production in rat macrophages along with its hypolipidemic property. Indian J Exp Biol 42:432–436

    CAS  PubMed  Google Scholar 

  • Umarani M, Shanthi P, Sachdanandam P (2008) Protective effect of Kalpaamruthaa in combating the oxidative stress posed by aflatoxin B1-induced hepatocellular carcinoma with special reference to flavonoid structure–activity relationship. Liver Int 28:200–213

    Article  CAS  PubMed  Google Scholar 

  • van Acker SA, de Groot MJ, van den Berg DJ, Tromp MN, Donne-Op den Kelder G, van der Vijgh WJ, Bast A (1996) A quantum chemical explanation of the antioxidant activity of flavonoids. Chem Res Toxicol 9:1305–1312

    Article  PubMed  Google Scholar 

  • Vijayalakshmi T, Muthulakshmi V, Sachdanandam P (2000) Toxic studies on biochemical parameters carried out in rats with Serankottai nei, a Siddha drug-milk extract of Semecarpus anacardium nut. J Ethnopharmacol 69:9–15

    Article  CAS  PubMed  Google Scholar 

  • Vinayagam KS, Khan HBH, Keerthiga G, Palanivelu S, Panchanatham S (2011) Hypolipidemic effect of Semecarpus anacardium in high cholesterol fed hypercholesterolemic rats. Chin J Integr Med (in press)

  • Yang RL, Le G, Li A, Zheng J, Shi Y (2006) Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition 22:1185–1191

    Article  CAS  PubMed  Google Scholar 

  • Yokozawa T, Eun J, Cho SS, Satoh A, Okamoto T, Sei Y (2006) The protective role of Chinese prescription Kangen-karyu extract on diet-induced hypercholesterolemia in rats. Biol Pharm Bull 29:760–765

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest among authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachdanandam Panchanadham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, H.B.H., Vinayagam, K.S., Kumar, S. et al. Anihypercholesterolemic effect of Semecarpus anacardium Linn nut milk extract in high-cholesterol-fed rats. Comp Clin Pathol 23, 875–884 (2014). https://doi.org/10.1007/s00580-013-1706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-013-1706-8

Keywords

Navigation