Skip to main content

Advertisement

Log in

Radiological outcome of tibial plateau fractures treated with percutaneously introduced synthetic porous Hydroxyapatite granules

Fractures du plateau tibial traitées par introduction percutanée de granules HAP

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Synthetic bone-graft substitutes are increasingly being used in clinical orthopaedic practice. In India, Sree Chitra Tirunal Institute of Medical Sciences and Technology has pioneered the research and development of indigenous ceramic bone substitutes. The Chitra HAP is a synthetic porous Hydroxyapatite that has completed pre-market trials according to prescribed format and has also undergone limited clinical trials in humans. This study is a clinical trial to ascertain the use of the product in the treatment of cancellous impaction fractures. Twenty-eight tibial plateau fractures were treated by a standard surgical protocol using the HAP for cancellous bone augmentation. The results were evaluated by serial radiography at specified intervals up to 1 year. At 1 year the HAP appeared fully integrated with the host bone radiologically and the articular subsidence had ceased. The synthetic HAP remained radio-opaque even at 1 year. No adverse effects were noticed due to the synthetic material. It was concluded that Chitra porous HAP is a safe and useful bone graft substitute for cancellous bone augmentation in fractures.

Résumé

Les substituts osseux sont de plus en plus employés dans la pratique orthopédique ou traumatologique. L’Institut des Sciences et de la Technologie Médicales de Sree Chitra Thirunal (Inde) a initié la recherche et le développement d’un substitut osseux. Le Chitra-HAP est une hydroxyapatite poreuse synthétique qui a satisfait aux épreuves de pré-market selon les normes définies et a également été utilisé dans des essais cliniques limités chez l’homme. Cette étude a pour objet de valider l’utilisation du produit dans le traitement des fractures du plateau tibial externe avec tassement. Vingt huit fractures ont été traitées selon un protocole chirurgical standard en utilisant le Chitra-HAP pour combler la perte d’os spongieux. Les résultats ont été évalués par radiographie à intervalles réguliers jusqu’à 1 an. A un an, le Chitra-HAP semble radiologiquement entièrement intégré à l’os hôte et on n’observe pas d’enfoncement articulaire. Le Chitra-HAP synthétique reste radio-opaque même à un an. Aucun effet secondaire n’a été relevé. On peut conclure que le Chitra-HAP est un substitut de remplacement sûr et efficace pour combler les pertes de substance d’os spongieux dans les fractures du plateau tibial externe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2–4
Fig. 5–8
Fig. 9

Similar content being viewed by others

References

  1. Bucholz RW, Carlton A, Holmes R (1989) Interporous Hydroxyapatite as bone graft substitute in tibial plateau fractures. Clin Orthop 240:53–62

    PubMed  Google Scholar 

  2. Chapman MW, Bucholz R, Cornell C (1997) Treatment of Acute fractures with a collagen-calcium phosphate graft material: a randomized clinical trial. J Bone Joint Surg 79-A:495–501

    Google Scholar 

  3. Horstmann WG, Verheyen CC, Leemans R (2003) An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury Feb 34(2):141–144

    Article  CAS  Google Scholar 

  4. Khodadadyan-Klostermann C, Liebig T, Melcher I, Raschke M, Haas NP (2002) Osseous integration of hydroxyapatite grafts in metaphyseal bone defects of the proximal tibia (CT-study). Acta Chir Orthop Traumatol Cech 69(1):16–21

    CAS  PubMed  Google Scholar 

  5. Ladd AL, Pliam NB (1999) Use of bone graft substitutes in Distal Radius fractures. J Am Acad Orthop Surg 7(5):279–290

    CAS  PubMed  Google Scholar 

  6. LeGeros RZ, LeGeros JP (1993) Dense Hydroxyapatite. In: Hench LL, Wilson J (eds) An introduction to Bioceramics. World Scientific, Delhi, pp 139–180

    Google Scholar 

  7. Lobenhoffer P, Gerich T, Witte F, Tscherne H (2002) Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J Orthop Trauma 16(3):143–149

    Article  CAS  PubMed  Google Scholar 

  8. Manoj K, Varma HK, Sivakumar R (2000) On the development of an apatite phosphate bone cement. Bull Mater Sci 23(2):135–145

    Google Scholar 

  9. Menon KV (2002) Clinical Trial of Chitra Hydroxyapatite Porous Granules: Ethics Committee approved clinical trial report submitted to the Sree Chitra Thirunal Institute of Medical Sciences and Technology, Kerala, India

    Google Scholar 

  10. Rasmussen PS (1973) Tibial condylar fractures: impairment of knee joint function as an indication for surgical treatment. J Bone Joint Surg Am 55:1331–1350

    CAS  PubMed  Google Scholar 

  11. Ravglioli A, Krajewski A (1992) Bioceramics: material properties, applications. Chapman and Hall, Madras

    Google Scholar 

  12. Samsheer KM (2000) Comparative evaluation of Chitra HA granule and Ossopan-Chitosan Sol in the management of periodontal intra bony defects: a clinical study. MDS Dissertation thesis, University of Kerala

  13. Scaglione PH, Buchman MT (1997) Collagraft bone substitute in upper extremity fractures: a preliminary study. Surg Forum 48:563–565

    Google Scholar 

  14. Schatzker J (2000) Fractures of the Tibial Plateau. In: Schatzker J, Tile M (eds) The rationale of operative fracture care. Springer, Berlin Heidelberg New York, pp 419–437

    Google Scholar 

  15. Shors EC, Holmes RE (1993) Porous Hydroxyapatite. In: Hench LL, Wilson J (eds) An introduction to Bioceramics. World Scientific, Delhi, pp 181–198

    Google Scholar 

  16. Sunny MC, Ramesh P, Varma HK (2002) Microstructured microspheres of hydroxyapatite bioceramic. J Mater Sci Mater Med 13:1–10

    Article  PubMed  Google Scholar 

  17. Towler M, Varma HK, Best SM, Bonfield W (1996) Processing and mechanical testing of hydroxyapatite/zirconium oxide composite for load bearing applications. In: Proceedings of the Fifth World Biomaterials Congress, Toronto

  18. Urban K (2002) Use of bioactive glass ceramics in the treatment of tibial plateau fractures. Acta Chir Orthop Traumatol Cech 69(5):295–301 (Abstract only)

    CAS  PubMed  Google Scholar 

  19. Varma HK, Sivakumar R (1996) Preparation and characterisation of free flowing Hydroxy apatite powders. Phosphorous Res Bull 6:35–38

    CAS  Google Scholar 

  20. Velayudhan S, Varma HK, Ramesh P (2000) Extrusion of hydroxyaptite into clinically significant shapes. Mater Lett 46:142–146

    Article  CAS  Google Scholar 

  21. Velayudhan S, Ramesh P, Varma HK (2001) Hydroxyapatite filled EVA copolymer composite for bone substitute applications. Trends Biomater Art Org 14:21–23

    Google Scholar 

  22. Vijayan S, Varma HK (2002) Microwave sintering of nanosized Hydroxyapatite powder compact. Mater Lett 56(5):827–831

    Article  CAS  Google Scholar 

  23. YamamuroT, Hench LL (1990) In: Wilson J (ed) Handbook of bioactive ceramics. CRC, Boca Raton

  24. Yetkinler DN, Ladd AL, Poser RD, Constanz BR, Carter D (1999) Biomechanical evaluation of fixation of intra-articular fractures of the distal part of the Radius in cadavera: Kirschner wires compared with calcium-phosphate bone cement. J Bone Joint Surg Am 81:391–399

    CAS  PubMed  Google Scholar 

  25. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:192–195

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Menon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menon, K.V., Varma, H.K. Radiological outcome of tibial plateau fractures treated with percutaneously introduced synthetic porous Hydroxyapatite granules. Eur J Orthop Surg Traumatol 15, 205–213 (2005). https://doi.org/10.1007/s00590-005-0238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-005-0238-6

Keywords

Mots clés

Navigation