Skip to main content
Log in

On Fractional Duffin–Kemmer–Petiau Equation

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this paper we treat a fractional bosonic, scalar and vectorial, time equation namely Duffin–Kemmer–Petiau Equation. The fractional variational principle was used, the fractional Euler–Lagrange equations were presented. The wave functions were determined and expressed in terms of Mittag–Leffler function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach Science Publishers, New York (1993)

    MATH  Google Scholar 

  2. Laskin N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135 (2000)

    Article  ADS  MATH  Google Scholar 

  3. Wang S., Xu M.: Generalized fractional Schrödinger equation with space–time fractional derivatives. J. Math. Phys. 48, 043502 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Muslih S.I.: Solutions of a particle with fractional δ-potential in a fractional dimensional space. Int. J. Theor. Phys. 49, 2095 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rozmej P., Bandrowski B.: On fractional Schrödinger equation. Comput. Methods Sci. Technol. 16, 191 (2010)

    Article  Google Scholar 

  6. Baleanu D., Muslih S.I.: About fractional supersymmetric quantum mechanics. Czechoslov. J. Phys. 55, 1063 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ashyralyevab A., Hicdurmazcd B.: On the numerical solution of fractional Schrödinger differential equations with the Dirichlet condition. Int. J. Comput. Math. 89, 1927 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bibi A., Kamran A., Hayat U., Mohyud-Din S.T.: New iterative method for time-fractional Schrodinger equations. World J. Mod. Sim. 9, 89 (2013)

    Google Scholar 

  9. Eid R., Muslih S.I., Baleanu D., Rabei E.: Fractional dimentional harmonic oscillator. Rom. J. Phys. 56, 323 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Laskin N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268, 298 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bhati M.I., Debnath L.: On fractional Schrodinger and Dirac equations. Int. J. Pure Appl. Math. 15, 1 (2004)

    MathSciNet  Google Scholar 

  12. Muslih S.I., Agrawal O.P., Baleanu D.: A fractional Schrö dinger equation and its solution. Int. J. Theor. Phys. 49, 1746 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Muslih S.I., Agrawal O.P., Baleanu D.: A fractional Dirac equation and its solution. J. Phys. A Math. Theor. 43, 055203 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Muslih, S.I., Agrawal, O.P., Baleanu, D.: Solutions of a fractional dirac equation. In: Proceedings of the ASME (2009) International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2009 August 30–September 2, 2009, San Diego, California, USA

  15. Raspini A.: Simple solutions of the fractional Dirac equation of order 2/3. Phys. Scr. 64, 20 (2001)

    Article  ADS  MATH  Google Scholar 

  16. Tarasov V.E.: Fractional dynamics of relativistic particle. Int. J. Theor. Phys. 49, 293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Petiau, G.: Contribution a la theorie des equations d’ondes corpusculaires. Acad. Roy. Belg. Mem. Collect 16 (1936)

  18. Duffin R.Y.: On the characteristic matrices of covariant systems. Phys. Rev. 54, 1114 (1938)

    Article  ADS  MATH  Google Scholar 

  19. Kummer N.: The particle aspect of meson theory. Proc. R. Soc. A 173, 91 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yetkin T., Havare A.: The massless DKP equation and Maxwell equations in Bianchi type III spacetimes. Chin. J. Phys. 41, 5 (2003)

    MathSciNet  Google Scholar 

  21. Nuri U.: Duffin–Kemmer–Petiau Equation, Proca Equatio and Maxwells equation in (1+1) D. Concepts Phys. 2, 273 (2005)

    Google Scholar 

  22. Nedjadi Y., Barrett R.C.: Solution of the central field problem for a Duffin–Kemmer–Petiau vector boson. J. Math. Phys. 19, 87 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Gómez-Aguilara J.F., Yépez-Martínezb H., Escobar-Jiméneza R.F., Astorga-Zaragozaa C.M., Morales-Mendozac L.J., González-Leec M.: Universal character of the fractional space–time electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 29, 727 (2015)

    Article  Google Scholar 

  24. Tarasov V.E.: Fractional integro-differential equations for electromagnetic waves in dielectric media. Theor. Math. Phys. 158, 355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Muslih S.I., Saddallah M., Baleanu D., Rabei E.: Lagrangian formulation of Maxwell’s field in fractional D dimensional space–time. Rom. J. Phys. 55, 659 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Stanislavsky A.A.: Hamiltonian formalism of fractional systems. Eur. Phys. J. B 49, 93 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. Agrawal O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. and Appl. 272, 368 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999)

  29. Clark B.C. et al.: Pion-nucleus scattering at medium energies with densities from chiral effective field theories. Phys. Lett. B 427, 231 (1998)

    Article  ADS  Google Scholar 

  30. Clark B.C. et al.: Relativistic impulse approximation for meson-nucleus scattering in the Kemmer–Duffin–Petiau formalism. Phys. Rev. Lett. 55, 592 (1985)

    Article  ADS  Google Scholar 

  31. Guertin R.F., Wilson T.L.: Noncausal propagation in spin-0 theories with external field interactions. Phys. Rev. D 15, 1518 (1977)

    Article  ADS  Google Scholar 

  32. Umezawa H.: Quantum Field Theory. North-Holland, Amsterdam (1956)

    MATH  Google Scholar 

  33. Gorenflo R., Kilbas A., Mainardi F., Rogosin S.: Mittag–Leffler functions, related topics and applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  34. Mainardi F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Mainardi F., Goren R.: On Mittag–Leffler-type functions in fractional evolution processes. J.Comput. Appl.Math. 118, 283 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Mainardi F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mainardi F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  38. Pillai R.N.: On Mittag–Leffler functions and related distributions. Ann. Inst. Stat. Math. 42(1), 157 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chetouani L., Merad M., Boudjedaa T., Lecheheb A.: Solution of Duffin–Kemmer–Petiau Equation for the Step Potential. Int. J. Theor. Phys. 43, 4 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Merad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzid, N., Merad, M. & Baleanu, D. On Fractional Duffin–Kemmer–Petiau Equation. Few-Body Syst 57, 265–273 (2016). https://doi.org/10.1007/s00601-016-1052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1052-x

Keywords

Navigation