Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 2/2014

01.03.2014 | Original Paper

Instantaneous Friction Angle and Cohesion of 2-D and 3-D Hoek–Brown Rock Failure Criteria in Terms of Stress Invariants

verfasst von: Youn-Kyou Lee, A. Bobet

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Mohr–Coulomb (M–C) failure criterion is one of the most widely used failure criteria in rock mechanics, although it has a number of shortcomings such as neglecting the nonlinear strength observed in rock or the effect of the intermediate principal stress σ 2. Other failure criteria have been proposed to effectively include in the predictions of failure the non-linear response of rock to confinement or the effects of the intermediate principal stress. The M–C criterion is still widely used, and it is arguably the criterion most used in practice. For example, stability evaluations of shallow rock structures such as slopes and foundations are routinely carried out by estimating a friction angle and a cohesion of the rock mass. To include the dependency of cohesion and friction angle on stresses, efforts are being made to estimate equivalent values of the M–C parameters for the range of stresses applicable to a particular design. The paper suggests a new and convenient approach to find the equivalent friction angle and cohesion from any failure criterion that can be expressed in terms of the Nayak and Zienkiewicz’s stress invariants. To demonstrate the capabilities and application of the methodology, the new approach is applied to two failure criteria: the Hoek–Brown (H–B) criterion and the Hoek–Brown and Willam–Warnke (HB–WW) criterion, 2-D and 3-D failure criteria, respectively. Results from the new method, in terms of equivalent friction and cohesion for the H–B criterion, are exactly the same as the results obtained from Balmer’s theory, which confirms the validity of the new method. The predicted equivalent friction and cohesion for the HB–WW criterion show a dependency on σ 2, which does not occur for a 2-D failure criterion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Balmer G (1952) A general analytical solution for Mohr’s envelope. Am Soc Test Mater 52:1260–1271 Balmer G (1952) A general analytical solution for Mohr’s envelope. Am Soc Test Mater 52:1260–1271
Zurück zum Zitat Benz T, Schwab R, Kauther RA, Vermeer PA (2008) A Hoek–Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min Sci 45:210–222CrossRef Benz T, Schwab R, Kauther RA, Vermeer PA (2008) A Hoek–Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min Sci 45:210–222CrossRef
Zurück zum Zitat Bieniawski ZT (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley, New York Bieniawski ZT (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley, New York
Zurück zum Zitat Cai M (2008) Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—insight from numerical modeling. Int J Rock Mech Min Sci 45:763–772CrossRef Cai M (2008) Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—insight from numerical modeling. Int J Rock Mech Min Sci 45:763–772CrossRef
Zurück zum Zitat Chang C, Haimson BC (2000) True triaxial strength and deformability of the German Continental deep drilling program (KTB) deep hole amphibolite. J Geophys Res 105:18999–19013CrossRef Chang C, Haimson BC (2000) True triaxial strength and deformability of the German Continental deep drilling program (KTB) deep hole amphibolite. J Geophys Res 105:18999–19013CrossRef
Zurück zum Zitat Fu W, Liao Y (2010) Non-linear shear strength reduction technique in slope stability calculation. Comput Geotech 37:288–298CrossRef Fu W, Liao Y (2010) Non-linear shear strength reduction technique in slope stability calculation. Comput Geotech 37:288–298CrossRef
Zurück zum Zitat Haimson BC, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min Sci 37:285–296CrossRef Haimson BC, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min Sci 37:285–296CrossRef
Zurück zum Zitat Haimson BC, Rudnicki JW (2010) The effect of the intermediate principal stress on fault formation and fault angle in siltstone. J Struct Geol 32:1701–1711CrossRef Haimson BC, Rudnicki JW (2010) The effect of the intermediate principal stress on fault formation and fault angle in siltstone. J Struct Geol 32:1701–1711CrossRef
Zurück zum Zitat Hoek E (1983) Strength of jointed rock masses, 23rd. Rankine Lecture. Géotechnique 33(3):187–223CrossRef Hoek E (1983) Strength of jointed rock masses, 23rd. Rankine Lecture. Géotechnique 33(3):187–223CrossRef
Zurück zum Zitat Hoek E (1990) Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 27(3):227–229CrossRef Hoek E (1990) Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 27(3):227–229CrossRef
Zurück zum Zitat Hoek E, Brown ET (1980a) Empirical strength criterion for rock masses. J Geotech Eng Div ASCE 106(GT9):1013–1035 Hoek E, Brown ET (1980a) Empirical strength criterion for rock masses. J Geotech Eng Div ASCE 106(GT9):1013–1035
Zurück zum Zitat Hoek E, Brown ET (1980b) Underground excavations in rock. Institution of mining and metallurgy, London Hoek E, Brown ET (1980b) Underground excavations in rock. Institution of mining and metallurgy, London
Zurück zum Zitat Hoek E, Brown ET (1988) The Hoek–Brown failure criterion—a 1988 update. In: Curran JH (ed) Proceedings 15th Canadian Rock Mechanical Symposium, Toronto, pp 31–38 Hoek E, Brown ET (1988) The Hoek–Brown failure criterion—a 1988 update. In: Curran JH (ed) Proceedings 15th Canadian Rock Mechanical Symposium, Toronto, pp 31–38
Zurück zum Zitat Hoek E, Wood D, Shah S (1992) A modified Hoek–Brown criterion for jointed rock masses. In: Hudson J (ed) Proceedings ISRM Symposium on Rock Characterization :Eurock ‘92. British Geotechnical Society, London, pp 209–213 Hoek E, Wood D, Shah S (1992) A modified Hoek–Brown criterion for jointed rock masses. In: Hudson J (ed) Proceedings ISRM Symposium on Rock Characterization :Eurock ‘92. British Geotechnical Society, London, pp 209–213
Zurück zum Zitat Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Balkema, Rotterdam Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Balkema, Rotterdam
Zurück zum Zitat Hoek E, Marinos P, Benissi M (1998) Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist formation. Bull Eng Geol Environ 57(2):151–160CrossRef Hoek E, Marinos P, Benissi M (1998) Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist formation. Bull Eng Geol Environ 57(2):151–160CrossRef
Zurück zum Zitat Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-Brown criterion–2002 edition. Proceedings NARMS-TAC Conference, Toronto 1:267–273 Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-Brown criterion–2002 edition. Proceedings NARMS-TAC Conference, Toronto 1:267–273
Zurück zum Zitat Jiang H, Wang X, Xie Y (2011) New strength criteria for rocks under polyaxial compression. Can Geotech J 48:1233–1245CrossRef Jiang H, Wang X, Xie Y (2011) New strength criteria for rocks under polyaxial compression. Can Geotech J 48:1233–1245CrossRef
Zurück zum Zitat Lee YK, Pietruszczak S, Choi BH (2012) Failure criteria for rocks based on smooth approximation to Mohr–Coulomb and Hoek–Brown failure functions. Int J Rock Mech Min Sci 56:146–160 Lee YK, Pietruszczak S, Choi BH (2012) Failure criteria for rocks based on smooth approximation to Mohr–Coulomb and Hoek–Brown failure functions. Int J Rock Mech Min Sci 56:146–160
Zurück zum Zitat Marinos V, Marinos P, Hoek E (2005) The geological strength index: applications and limitations. Bull Eng Geol Environ 64:55–65CrossRef Marinos V, Marinos P, Hoek E (2005) The geological strength index: applications and limitations. Bull Eng Geol Environ 64:55–65CrossRef
Zurück zum Zitat Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76:1255–1269CrossRef Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76:1255–1269CrossRef
Zurück zum Zitat Mogi K (2007) Experimental rock mechanics. Taylor & Francis Group, London Mogi K (2007) Experimental rock mechanics. Taylor & Francis Group, London
Zurück zum Zitat Nayak GC, Zienkiewicz OC (1972) Convenient forms of stress invariants for plasticity. J Struct Div ASCE 98(ST4):949–953 Nayak GC, Zienkiewicz OC (1972) Convenient forms of stress invariants for plasticity. J Struct Div ASCE 98(ST4):949–953
Zurück zum Zitat Priest SD (2005) Determination of shear strength and three-dimensional yield strength for the Hoek–Brown criterion. Rock Mech Rock Eng 38(4):299–327CrossRef Priest SD (2005) Determination of shear strength and three-dimensional yield strength for the Hoek–Brown criterion. Rock Mech Rock Eng 38(4):299–327CrossRef
Zurück zum Zitat Takahashi M, Koide H (1989) Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m. In: Maury V, Fourmaintraux D (eds) Rock at great depth, vol 1. Balkema, Rotterdam, pp 19–26 Takahashi M, Koide H (1989) Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m. In: Maury V, Fourmaintraux D (eds) Rock at great depth, vol 1. Balkema, Rotterdam, pp 19–26
Zurück zum Zitat Ucar R (1986) Determination of shear failure envelope in rock masses. J Geotech Eng 112(3):303–315CrossRef Ucar R (1986) Determination of shear failure envelope in rock masses. J Geotech Eng 112(3):303–315CrossRef
Zurück zum Zitat Willam, KJ, Warnke EP (1974) Constitutive model for triaxial behavior of concrete. Colloquium on concrete structures subjected to triaxial stresses, ISMES Bergamo, IABSE Report Willam, KJ, Warnke EP (1974) Constitutive model for triaxial behavior of concrete. Colloquium on concrete structures subjected to triaxial stresses, ISMES Bergamo, IABSE Report
Zurück zum Zitat Zhang L, Zhu H (2007) Three-dimensional Hoek–Brown strength criterion for rocks. J Geotech Geoenviron Eng 133(9):1128–1135CrossRef Zhang L, Zhu H (2007) Three-dimensional Hoek–Brown strength criterion for rocks. J Geotech Geoenviron Eng 133(9):1128–1135CrossRef
Metadaten
Titel
Instantaneous Friction Angle and Cohesion of 2-D and 3-D Hoek–Brown Rock Failure Criteria in Terms of Stress Invariants
verfasst von
Youn-Kyou Lee
A. Bobet
Publikationsdatum
01.03.2014
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 2/2014
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-013-0423-6

Weitere Artikel der Ausgabe 2/2014

Rock Mechanics and Rock Engineering 2/2014 Zur Ausgabe