Skip to main content
Log in

The Solubilities and Thermodynamic Equilibrium of Anhydrite and Gypsum

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Anhydritic claystones consist of a clay matrix with finely distributed anhydrite. Their swelling has led to severe damage and high repair costs in several tunnels. Gypsum growth combined with water uptake by the clay minerals is the main cause of the swelling process. Identifying the conditions under which gypsum rather than anhydrite represents the stable phase is crucial for understanding rock swelling. As existing studies on the anhydrite–gypsum–water equilibrium appear to be contradictory and do not provide all of the information required, we revisit this classic problem here by formulating and studying a thermodynamic model. In contrast to earlier research, our model is not limited to the anhydrite–gypsum equilibrium, but allows for the determination of the equilibrium concentrations of the individual anhydrite dissolution and gypsum precipitation reactions that underlie the sulphate transformation. The results of the paper are, therefore, also valuable for the formulation of comprehensive sulphate–water interaction models that consider diffusive and advective ion transport simultaneously with the chemical dissolution and precipitation reactions. Furthermore, in addition to the influencing factors that have been considered by previous studies (i.e., fluid and solid pressures, concentration of foreign ions, temperature), we consistently incorporate the effect of the surface energy of the sulphate crystals into the thermodynamic equations and discuss the effect of the clay minerals on the equilibrium conditions. The surface energy effects, which are important particularly in the case of claystones with extremely small pores, increase the solubility of gypsum, thus shifting the thermodynamic equilibrium in favour of anhydrite. Clay minerals also favour anhydrite because they lower the activity of the water. The predictions from the model are compared with experimental results and with predictions from other models in the literature. Finally, a comprehensive equilibrium diagram is presented in terms of pore water pressure, solid pressure, temperature, water activity and pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Parameter of Davies equation

A i :

Total interfacial area of species i

C :

Concentration

c 0 :

Concentration at standard state

c eq,A :

Anhydrite equilibrium concentration

c eq,G :

Gypsum equilibrium concentration

c i :

Concentration of constituent i

g :

Gravitational acceleration

G :

Gibbs free energy

I :

Ionic strength

K G :

Ion activity product of gypsum

K eq,A :

Equilibrium solubility product of anhydrite

K eq,G :

Equilibrium solubility product of gypsum

\( n_{{{\text{Ca}}^{2 + } }} \) :

Number of moles of Ca2+

n G :

Number of moles of gypsum

n W :

Number of moles of water

n i :

Number of moles of constituent i

\( n_{{{\text{SO}}_{4}^{2 - } }} \) :

Number of moles of SO 2–4

p A :

Anhydrite pressure

P atm :

Atmospheric pressure

p G :

Gypsum pressure

P i :

Pressure of constituent i

p S :

Solid pressure

p V :

Vapour pressure of a solution

p V,0 :

Vapour pressure of pure water

p W :

Pore water pressure

Q :

Heat

R :

Universal gas constant

r p :

Pore radius

r i :

Radius of particle i

r A :

Radius of anhydrite particles

r G :

Radius of gypsum particles

\( S_{{{\text{Ca}}^{2 + } }}^{0} \) :

Molar entropy of Ca2+ at standard state

S 0A :

Molar entropy of anhydrite at standard state

S 0G :

Molar entropy of gypsum at standard state

S 0W :

Molar entropy of water at standard state

S i :

Molar entropy of constituent i

S i :

Molar entropy of constituent i at standard state

\( S_{{{\text{SO}}_{4}^{2 - } }}^{0} \) :

Molar entropy of SO 2−4 at standard state

T :

Temperature

T 0 :

Temperature at standard state

T eq :

Equilibrium temperature

T 0eq :

Equilibrium temperature under atmospheric pressure

U :

Internal energy

V :

Volume

\( V_{{{\text{Ca}}^{2 + } }}^{0} \) :

Molar volume of Ca2+ at standard state

V 0A :

Molar volume of anhydrite at standard state

V 0G :

Molar volume of gypsum at standard state

V 0W :

Molar volume of water at standard state

V i :

Molar volume of constituent i

V W :

Molar volume of water

V 0 i :

Molar volume of constituent i at standard state

\( V_{{{\text{SO}}_{4}^{2 - } }}^{0} \) :

Molar volume of SO 2−4 at standard state

H :

Depth below surface

z i :

Ion valence of constituent i

\( \alpha_{{{\text{Ca}}^{2 + } }} \) :

Activity of Ca2+

α G :

Activity of gypsum

α W :

Water activity

α i :

Activity of constituent i

\( \alpha_{{{\text{SO}}_{4}^{2 - } }} \) :

Activity of SO 2−4

γ ± :

Mean activity coefficient

γ A :

Surface free energy of the anhydrite–water interface

\( \gamma_{{{\text{Ca}}^{2 + } }} \) :

Activity coefficient of Ca2+

γ G :

Surface free energy of the gypsum–water interface

γ i :

Surface free energy of the interface of constituent i with water

γ i :

Activity coefficient of constituent i

\( \gamma_{{{\text{SO}}_{4}^{2 - } }} \) :

Activity coefficient of SO 2−4

\( \Delta_{\text{f}} G_{{{\text{Ca}}^{2 + } }}^{0} \) :

Standard Gibbs energy of formation of Ca2+

Δf G 0A :

Standard Gibbs energy of formation of anhydrite

Δf G 0G :

Standard Gibbs energy of formation of gypsum

Δf G 0W :

Standard Gibbs energy of formation of water

Δf G 0 i :

Standard Gibbs energy of formation of constituent i

\( \Delta_{\text{f}} G_{{{\text{SO}}_{4}^{2 - } }}^{0} \) :

Standard Gibbs energy of formation of SO 2–4

Δr,A G 0 :

Standard Gibbs energy of anhydrite dissolution

Δr,G G 0 :

Standard Gibbs energy of gypsum dissolution

Δr,GA G 0 :

Standard Gibbs energy of anhydrite hydration

Δr,A S 0 :

Standard entropy of anhydrite dissolution

Δr,G S 0 :

Standard entropy of gypsum dissolution

Δr,GA S 0 :

Standard entropy of anhydrite hydration

Δr,A V 0 :

Standard volume of anhydrite dissolution

Δr,G V 0 :

Standard volume of gypsum dissolution

Δr,GA V 0 :

Standard volume of anhydrite hydration

ε :

Dielectric constant (Davies equation)

λ W :

Ater activity coefficient

\( \mu_{{{\text{Ca}}^{2 + } }} \) :

Chemical potential of formation of Ca2+

μ A :

Chemical potential of formation of anhydrite

μ G :

Chemical potential of formation of gypsum

μ W :

Chemical potential of formation of water

μ i :

Chemical potential of constituent i

\( \mu_{{{\text{SO}}_{4}^{2 - } }} \) :

Chemical potential of formation of SO 2–4

ρ R :

Rock density

ρ W :

Water density

x W :

Mole fraction of water

Ψ :

Potential

Ψ m :

Matric potential

Ψ π :

Osmotic potential

Ψ a :

Adsorptive component of the matric potential

Ψ c :

Capillary component of the matric potential

References

  • Alimi F, Elfil H, Gadri A (2003) Kinetics of the precipitation of calcium sulfate dihydrate in a desalination unit. Desalination 157:9–16

    Article  Google Scholar 

  • Amstad C, Kovári K (2001) Untertagbau in quellfähigem Fels. Schlussbericht Forschungsauftrag 52/94 des Bundesamts für Strassen ASTRA

  • Anagnostou G, Pimentel E, Serafeimidis K (2010) Swelling of sulphatic claystones—some fundamental questions and their practical relevance. Geomech Tunn 3(5):567–572

    Article  Google Scholar 

  • Anderson GM (1996) Thermodynamics of Natural systems. University of Toronto, Wiley

  • Atkins P, De Paula J (2006) Atkins’ physical chemistry, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  • Bachema (1995–7) Chemische Untersuchung von Wasserproben Adlertunnel Bahn 2000. Several reports by “Institut Bachema AG, Analytische Laboratorien”

  • Beck D, Thullner T (1998) Der Engelbergbasistunnel und der Umbau des Autobahndreiecks Leonberg. Tiefbau, Heft 10:692–699

    Google Scholar 

  • Berdugo IR (2007) Tunnelling in sulphatic-bearing rocks—expansive phenomena. Doctoral Thesis, Universitat Politècnica de Catalunya

  • Bihannic I, Delville A, Demé B, Plazanet M, Villiéras F, Michot JL (2009) Clay swelling: new insights from neutron-based techniques. Neutron Scattering Applications and Techniques, Part III, 521–546

  • Blandamer MJ, Engberts JBFN, Gleeson PT, Reis JOCR (2005) Activity of water in aqueous systems; A frequently neglected property. Chem Soc Rev 34:440–458

    Article  Google Scholar 

  • Blount CW, Dickson FW (1973) Gypsum–anhydrite equilibria in systems CaSO4–H2O and CaCO3–NaCl–H2O. Am Mineral 58:323–331

    Google Scholar 

  • Bock E (1961) On the solubility of anhydrous calcium sulfate and of gypsum in concentrated solutions of sodium chloride at 25 °C, 30 °C, 40 °C and 50 °C. Can J Chem 39:1746–1751

    Article  Google Scholar 

  • Borst LR (1982) Some effects of compaction and geological time on the pore parameters of argillaceous rocks. Sedimentology 29:291–298

    Article  Google Scholar 

  • Butscher C, Huggenberger P, Zechner E, Einstein HH (2011) Relation between hydrogeological setting and swelling potential of clay–sulphate. Eng Geol 122:204–214

    Article  Google Scholar 

  • Chenevert ME (1969) Adsorptive pore pressure of argillaceous rocks. In: Proceeding of II Symposium on Rock Mechanics, University of California, Berkeley, pp 599–627

  • Dahlen FA (1992) Metamorphism of nonhydrostatically stressed rocks. Am J Sci 292:184–198

    Article  Google Scholar 

  • Davies CW (1962) Ion association. Butterwoths, London

    Google Scholar 

  • Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. Phys Z 24:185–206

    Google Scholar 

  • Derjaguin BV, Churaev VN, Muller MV (1987) Surface forces. Consultants Bureau, New York

    Book  Google Scholar 

  • Desbois G, Urai LJ, Kukla AP (2009) Morphology of the pore space in claystones—evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. Electronic-earth 4:15–22

    Google Scholar 

  • Dewers T, Ortoleva JP (1989) Mechano-chemical coupling in stressed rocks. Geochim Cosmochim Acta 53:1243–1258

    Article  Google Scholar 

  • Dormieux L, Lemarchand E, Coussy O (2003) Macroscopic and micromechanical approaches to the modelling of osmotic swelling in clays. Transp Porous Media 50:75–91

    Article  Google Scholar 

  • Einstein HH (2000) Tunnels in Opalinus clayshale—a review of case histories and new developments. Tunn Undergr Space Technol 15(1):13–29

    Article  Google Scholar 

  • Fermi E (1936) Thermodynamics. Dover Publications, Inc., New York

    Google Scholar 

  • Flatt JR, Scherer WG (2008) Thermodynamics of crystallization stresses in DEF. Cem Concr Res 38:325–336

    Article  Google Scholar 

  • Freundlich H (1922) Colloid and Capillary Chemistry. Translated by Hatfield HS, Dutton EP. Company Publishers, New York, p 883

  • Freyer D, Voigt W (2003) Crystallization and phase stability of CaSO4 of and CaSO4—based salts. Monatsh Chem 134:693–719

    Article  Google Scholar 

  • Gildseth W, Habenschuss A, Spedding FH (1972) Precision measurements of densities and thermal dilation of water between 5° and 80 °C. J Chem Eng Data 17(4):402–409

    Article  Google Scholar 

  • Gimmi T, Waber HN (2004) Modelling of tracer profiles in pore water of argillaceous rocks in the Benken Borehole: stable water isotopes, chloride, and chlorine isotopes. NAGRA technical report 04–05

  • Grob H (1972) Schwelldruck im Belchentunnel. Internationales Symposium für Untertagbau, Luzern, pp 99–119

    Google Scholar 

  • Hanshaw BB, Bredehoeft JD (1968) On the maintenance of anomalous fluid pressures: II. Source layer at depth. Geol Soc Am Bulletin 79:1107–1122

    Article  Google Scholar 

  • Hardie LA (1967) The gypsum–anhydrite equilibrium at one atmosphere. Amer Mineral 52:171–200

    Google Scholar 

  • Hauber L (1991) Geologie des Bözbergtunnels. N3: Bözberg- und Habsburgtunnel. Mitteilungen der Schweizerischen Gesellschaft für Boden- und Felsmechanik, Heft 123

  • He S, Oddo EJ, Thomson BM (1994) The nucleation kinetics of calcium sulfate dihydrate in NaCl solutions up to 6 m and 90 °C. J Colloid Interface Sci 162:297–303

    Article  Google Scholar 

  • Huggenberger P (2012) University of Basle, personal communication

  • Innorta G, Rabbi E, Tomadin L (1980) The gypsum–anhydrite equilibrium by solubility measurements. Geochim Cosmochim Acta 44:1931–1936

    Article  Google Scholar 

  • Kelley KK (1960) Contributions to the data on theoretical metallurgy, XIII. High-temperature heat-content, heat-capacity, and entropy data for the elements and inorganic compounds. US Bur Mines Bull 584:232

    Google Scholar 

  • Kelley KK, Southard JC, Anderson CT (1941) Thermodynamic properties of gypsum and its dehydration products. US Bur Mines Tech Paper 625

  • Kirschke D, Kuhnhenn K, Prommersberger G (1991) Der Freudensteintunnel: Eine Herausforderung für den planenden Ingenieur. Ingenieurbauwerke, DB Neubaustrecke Mannheim-Stuttgart 8:5–39

    Google Scholar 

  • Kontrec J, Kralj D, Brečević L (2002) Transformation of anhydrous calcium sulphate into calcium sulphate dihydrate in aqueous solutions. J Cryst Growth 240:203–211

    Article  Google Scholar 

  • Kurz G, Spang J (1984) Instandsetzung und Erneuerung der Blähstrecke des Kappelesbergtunnels, Bautechnik, Heft 11:365–376

  • Lancia A, Musmarra D, Prisciandaro M (1999) Measuring induction period for calcium sulfate dihydrate precipitation. AIChE J 45(2):390–397

    Article  Google Scholar 

  • Lancia A, Musmarra D, Prisciandaro M (2002) Calcium sulfate. Contribution on Kirk-Othmer Encyclopedia of chemical technology, 4th edn. Wiley, New York

    Google Scholar 

  • Lima A, Pineda AJ, Romero E (2010) Thermal pulse effects on the stiffness degradation of unsaturated clayey materials. In: Proceeding of international conference on unsaturated soils. ‘Unsaturated soils’. Taylor & Francis, Barcelona, pp 567–572

  • Lothenbach B (2012) EMPA Zurich, personal communication

  • Low PF, Margheim FJ (1979) The swelling of clay. I. Basic concepts and empirical equations. Soil Sci Soc Am J 43:473–481

    Article  Google Scholar 

  • LPM (2000–6) Wasseranalysen Chienberg Tunnel. Several reports by “Labor für Prüfung und Materialtechnologie”

  • MacDonald GJF (1953) Anhydrite–gypsum equilibrium relations. Am J Sci 251:884–898

    Article  Google Scholar 

  • Madsen FT, Müller-Vonmoos M (1988) Das Quellverhalten der Tone. Mitteil. des Inst. für Grundbau und Bodenmechanik Nr. 133:39–50

  • Mahmoud MHH, Rashad MM, Ibrahim IA, AbdelAal EA (2004) Crystal modification of calcium sulfate dihydrate in the presence of some surface-active agents. J Colloid Interface Sci 270:99–105

    Article  Google Scholar 

  • Marsal D (1952) Der Einfluss des Druckes auf das System CaSO4–H2O. Heidelberger Beiträge zur Mineralogie and Petrographie 3:289–296

    Google Scholar 

  • Marshall WL, Slusher R (1966) Thermodynamics of calcium sulphate dihydrate in aqueous sodium chloride solutions, 0–110 °C. J Phys Chem 70:4015–4027

    Article  Google Scholar 

  • Medici F, Rybach L (1995) Geothermal map of Switzerland 1995 (heat flow density), Matériaux pour la Géologie de la Suisse, Geophysique Nr., p 30

  • Mering J (1946) On the hydration of montmorillonite. Trans Faraday Soc 42B:205–219

    Article  Google Scholar 

  • Merkel JB, Planer-Friedrich B (2008) Groundwater geochemistry, 2nd edn. Springer, Berlin

    Google Scholar 

  • Meyer M (2001) Die Geologie des Adlertunnels. Bull Angew Geol 6(2):199–208

    Google Scholar 

  • Millero FJ (1972) The partial molar volume of electrolytes in aqueous solutions. Water and Aqueous Solution, Wiley

  • Mishra RK (2012) Simulation of interfaces in construction materials: tricalcium silicate, gypsum, and organic modifiers. Phd Thesis, University of Akron

  • Mitchell JK, Soga K (2005) Fundamentals of Soil Behavior, 3rd edn. Wiley, New York

    Google Scholar 

  • Møller N (1988) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na–K–Ca–Cl–SO4–H2O system to high temperature and concentration. Geochim Cosmochim Acta 52:821–837

    Article  Google Scholar 

  • Muñoz JJ, Alonso EE, Lloret A (2009) Thermo-hydraulic characterization of soft rock by means of heating pulse test. Géotechnique 59(4):293–306

    Article  Google Scholar 

  • Nielsen EA (1964) Kinetics of precipitation. Pergamon Press, Oxford

    Google Scholar 

  • Nielsen EA, Söhnel O (1971) Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data. J Cryst Growth 11:233–242

    Article  Google Scholar 

  • Noher H-P, Meyer N (2002) Belchentunnel Versuchsdrainagestollen, Beurteilung der Wasseranalysen. Report 1510720.003 by Geotechnisches Institut AG

  • Nordstrom DK, Plummer LN, Langmuir D, Busenberg E, May HM, Jones BF, Parkhurst DL (1990) Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Melchior D et al (eds) Chemical modeling of aqueous systems II, pp 398–413

  • Passioura BJ (1980) The meaning of matric potential. J Exp Bot 31(123):1161–1169

    Article  Google Scholar 

  • Paul A, Wichter L (1996) Das Langzeitverhalten von Tunnelbauwerken im quellenden Gebirge—Neuere Messergebnisse vom Stuttgarter Wagenburgtunnel, Taschenbuch für den Tunnelbau, Verlag Glückauf, Essen

  • Pearson FJ, Arcos D, Bath A, Boisson J-Y, Fernández AM, Gäbler H-E, Gaucher E, Gautschi A, Griffault L, Hernán P, Waber HN (2003) Mont Terri Project—Geochemistry of water in the Opalinus clay formation at the Mont Terri Rock Laboratory. Reports of the FOWG, Geology Series, No. 5—Bern

  • Philip RJ (1977) Unitary approach to capillary condensation and adsorption. J Chem Phys 66(11):5069–5075

    Article  Google Scholar 

  • Pitzer KS (1973) Thermodynamics of electrolytes. I Theoretical basis and general equations. J Phys Chem 77:268–277

    Article  Google Scholar 

  • Posnjak E (1938) The system CaSO4. Am J Sci (5th edn) 35-A:247–272

    Google Scholar 

  • Prisciandaro M, Lancia A, Musmarra D (2001) Gypsum nucleation into sodium chloride solutions. AIChE J 47(4):929–934

    Article  Google Scholar 

  • Raju K, Atkinson G (1990) Thermodynamics of ‘scale’ mineral solubilities. 3. Calcium sulfate in aqueous NaCl. J Chem Engin Data 35:361–367

    Article  Google Scholar 

  • Rolnick LS (1954) The stability of gypsum and anhydrite in the geologic environment. PhD thesis, MIT

  • Scanlon RB, Andraski JB, Bilskie J (2002) Miscellaneous methods for measuring of water potential. Methods of soil analysis, Part 4, Physical methods. Soil Science Society of America, Madison, pp 643–670

    Google Scholar 

  • Schaectherle K (1929) Die Dichtung und Entwässerung des Schanztunnels bei Fichtenberg, Die Bautechnik, Heft, p 40

  • Schaeren G, Norbert J (1989) Tunnel du Mont Terri et du Mont Russelin—La traversée des ‘roches à risques’: marnes et marnes à anhydrite. Juradurchquerungen—aktuelle Tunnelprojekte im Jura Mitteilungen der Schweizerischen Gesellschaft für Boden- und Felsmechanik, Heft, p 119

  • Scherer WG (1999) Crystallization in pores. Cem Concr Res 29:1347–1358

    Article  Google Scholar 

  • Serafeimidis K, Anagnostou G (2012) On the solubilities of anhydrite and gypsum. In: Proceeding of second international symposium on constitutive modeling of geomaterials, advances and new applications. Beijing

  • Serafeimidis K, Anagnostou G (2012) On the kinetics of the chemical reactions underlying the swelling of anhydritic rocks. Eurock 2012, Stockholm

  • Serafeimidis K, Anagnostou G (2013) On the time-development of sulphate hydration in anhydritic swelling rocks. Rock Mech Rock Eng 46:619–634

    Article  Google Scholar 

  • Steiger M (2005a) Crystal growth in porous materials—I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469

    Article  Google Scholar 

  • Steiger M (2005b) Crystal growth in porous materials—II: influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481

    Article  Google Scholar 

  • Stroes-Gascoyne S, Schippers A, Schwyn B, Poulain S, Segreant C, Simonoff M, Le Marrec C, Altmann S, Nagaoka T, Mauclaire L, McKenzie J, Daumas S, Vinsot A, Beaucaire C, Matray MJ (2007) Microbial community analysis of Opalinus clay drill core samples from the Mont Terri underground research laboratory, Switzerland. Geomicrobiol J 24(1):1–17

    Article  Google Scholar 

  • Toriumi T, Hara R (1938) On the transition point of calcium sulphate in water and concentrated seawater. Tech Rep Tohoku Imp Univ 12:572–590

    Google Scholar 

  • Tuller M, Or D, Dudley ML (1999) Adsorption and capillary condensation in porous media: liquid retention and interfacial configuration in angular pores. Water Resour Res 35(7):1949–1964

    Article  Google Scholar 

  • Van Loon LR, Soler JM (2003) Diffusion of HTO, 36Cl, 125I and 22Na+ in Opalinus clay: effect of confining pressure, sample orientation, sample depth and temperature. NAGRA Technical Report 03–07

  • Van’t Hoff JH, Armstrong EF, Hinrichsen W, Wigert F, Just G (1903) Gips und Anhydrite. Zeitschrift f. physik. Chemie 45:257–306

    Google Scholar 

  • Voegelin A, Kretzschmar R (2002) Stability and mobility of colloids in Opalinus clay. NAGRA Technical Report 02–14

  • Washburn EW (1926–1933) International critical tables of numerical data, physics, chemistry and technology. New York, Published for the National Research Council by McGraw-Hill

  • Wegmüller MC (2001) Einflüsse des Bergwassers auf Tiefbau/Tunnelbau

  • White WM (2005) Geochemistry. John-Hopkins University Press

  • Yong NR (1999) Soil suction and soil-water potentials in swelling clays in engineered clay barriers. Eng Geol 54:3–13

    Article  Google Scholar 

  • Yong NR, Warkentin BP (1975) Soil properties and behaviour. Elsevier, Amsterdam

    Google Scholar 

  • Zehringer M (1997) Wasseranalysen Brunnenbohrungen Tal Pratteln Adlertunnel. Several reports by “Gewässerschutzamt Kanton Basel-Stadt, Abteilung Labor”

  • Zen E-An (1965) Solubility measurements in the system CaSO4–NaCl–H2O at 35 °, 50 ° and 70 °C and one atmosphere pressure. J Petrol 6 Part 1:124–164

    Article  Google Scholar 

Download references

Acknowledgments

This paper evolved within the framework of the research project ‘Modelling of anhydritic swelling claystones’ which is being carried out at the ETH Zurich, financed by the Swiss National Science Foundation (SNF) with Project Nr. 200021-126717/1 and the Swiss Federal Roads Office (FEDRO) with Project Nr. FGU 2010-007. The Authors would like to acknowledge Prof. Dr. Robert Flatt, ETH Zurich, for his valuable suggestions concerning the importance of pore size and liquid–crystal interfacial effects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Anagnostou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serafeimidis, K., Anagnostou, G. The Solubilities and Thermodynamic Equilibrium of Anhydrite and Gypsum. Rock Mech Rock Eng 48, 15–31 (2015). https://doi.org/10.1007/s00603-014-0557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0557-1

Keywords

Navigation