Skip to main content
Log in

Multiphysics Lattice Discrete Particle Modeling (M-LDPM) for the Simulation of Shale Fracture Permeability

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A three-dimensional multiphysics lattice discrete particle model (M-LDPM) framework is formulated to investigate the fracture permeability behavior of shale. The framework features a dual lattice system mimicking the mesostructure of the material and simulates coupled mechanical and flow behavior. The mechanical lattice model simulates the granular internal structure of shale, and describes heterogeneous deformation by means of discrete compatibility and equilibrium equations. The network of flow lattice elements constitutes a dual graph of the mechanical lattice system. A discrete formulation of mass balance for the flow elements is presented to model fluid flow along cracks and intact materials. The overall computational framework is implemented with a mixed explicit–implicit integration scheme and a staggered coupling method that makes use of the dual lattice topology enabling the seamless two-way coupling of the mechanical and flow behaviors. The proposed model is used for the computational analysis of shale fracture permeability behavior by simulating triaxial direct shear tests on Marcellus shale specimens under various confining pressures. The simulated mechanical response is calibrated against the experimental data, and the predicted permeability values are also compared with the experimental measurements. Furthermore, the paper presents the scaling analysis of both the mechanical response and permeability measurements based on simulations performed on geometrically similar specimens with increasing size. The simulated stress strain curves show a significant size effect in the post-peak due to the presence of localized fractures. The scaling analysis of permeability measurements enables prediction of permeability for large specimens by extrapolating the numerical results of small ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(\epsilon _N, \epsilon _M, \epsilon _L\) :

Facet normal (N) and shear (ML) strains

\(t_N, t_M, t_L\) :

Facet normal (N) and shear (ML) stresses

\(\delta _N, \delta _M, \delta _L\) :

Mesoscale crack opening: normal (N) and shear (ML)

\(\ell\) :

Tetrahedron edge associated with a facet

\(\mathbf {n}, \mathbf {m}, \mathbf {l}\) :

Unit vector normal and tangential to a facet

\(A_{\text {f}}\) :

Projected facet area

\(\mathbf {t}\) :

Total stress vector on each facet

\(\mathbf {t}_{{s}}\) :

Facet stress vector applied to solid phase

\(\mathbf {t}_{{w}}\) :

Fluid pressure vector on each facet

\(E_N, \alpha\) :

Facet normal modulus and shear-normal coupling parameter

\(\sigma _{{t}}, \ell _{{t}}\) :

Facet tensile strength and characteristic length

\(\sigma _{{s}}, \mu _0\) :

Facet shear strength and internal friction coefficient

b :

Biot coefficient

\(\ddot{\mathbf {U}}, \ddot{\mathbf {\Theta }}\) :

Translational and rotational acceleration of nodes

\(M_{{u}}, M_{\theta }\) :

Mass and moment of inertia of each cell

L :

Length of flow edge element

\(A, A_n\) :

Area and projected area of the face of two adjacent tetrahedra (or control volume)

\(V_i\) :

Control volume i (\(i =1, 2\)) associated with the flow edge element

\(g_i\) :

Faction coefficient

\(\rho _{{{w}}}, \rho _{{{w}}0}\) :

Fluid density in the current and reference state

\(p_i, p_0\) :

Fluid pressure in control volume \(V_i\) and its reference value

\(K_{{w}}\) :

Bulk modulus of fluid

\(M_{{wu}}^i\) :

Fluid mass in uncracked volume \(V_i\)

\(M_{{wc}}^i\) :

Fluid mass stored in cracked volume \(V_{{ci}}\)

\(Q_{{wu}}^{12}\) :

Fluid mass flux from uncracked volume \(V_1\) into \(V_2\)

\(Q_{{wc}}^{12}\) :

Fluid mass flux from \(V_1\) into \(V_2\) through cracks

\(M_{{b}}\) :

Biot modulus

\(\kappa _0\) :

Intrinsic permeability of intact materials

\(\mu _{{w}}\) :

Dynamic viscosity of fluid

\(\mathbf {C}, \mathbf {D}, \mathbf {S}\) :

Capacity, conductance, and source matrices for the flow model

\(\mathbf {p}\) :

Unknown pressure vector

HDR :

Height, diameter, and radius of the simulated cylindrical specimen

\(\sigma _{{c}}^\prime\) :

Effective confining pressure

\(p_{\text {in}}, p_{\text {out}}\) :

Inlet and outlet pressures on top and top of specimens

Q :

Absolute value of downstream flow rate

\(K_{\text {app}}\) :

Macroscopic apparent permeability along specimen core

\(K_{\text {in}}, K_{{b}}\) :

Macroscopic permeability of the intact material and the fracture localization band

h :

Width of the permeable fracture localization band

References

  • Akono AT, Kabir P (2016) Microscopic fracture characterization of gas shale via scratch testing. Mech Res Commun 78:86–92

    Article  Google Scholar 

  • Asahina D, Houseworth JE, Birkholzer JT, Rutqvist J, Bolander J (2014) Hydro-mechanical model for wetting/drying and fracture development in geomaterials. Comput Geosci 65:13–23

    Article  Google Scholar 

  • Ashari SE, Buscarnera G, Cusatis G (2017) A lattice discrete particle model for pressure-dependent inelasticity in granular rocks. Int J Rock Mech Min Sci 91:49–58

    Article  Google Scholar 

  • Bažant ZP (1984) Size effect in blunt fracture: concrete, rock, metal. J Eng Mech 110(4):518–535

    Article  Google Scholar 

  • Bažant ZP, Jirásek M (2017) Creep and hygrothermal effects in concrete structures. Springer, New York

    Google Scholar 

  • Bažant ZP, Planas J (1997) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton

    Google Scholar 

  • Belheine N, Plassiard JP, Donzé FV, Darve F, Seridi A (2009) Numerical simulation of drained triaxial test using 3d discrete element modeling. Comput Geotech 36(1–2):320–331

    Article  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  Google Scholar 

  • Bolander J, Berton S (2004) Simulation of shrinkage induced cracking in cement composite overlays. Cem Concr Compos 26(7):861–871

    Article  Google Scholar 

  • Bolander J Jr, Saito S (1998) Fracture analyses using spring networks with random geometry. Eng Fract Mech 61(5–6):569–591

    Article  Google Scholar 

  • Bousikhane F, Li W, Di Luzio G, Cusatis G (2018) Full coupling between diffusion and mechanical analysis in a discrete computational framework. In: Computational modelling of concrete structures: proceedings of the conference on computational modelling of concrete and concrete structures (EURO-C 2018), February 26-March 1, 2018, CRC Press, Bad Hofgastein, Austria, p 305

  • Carey JW, Lei Z, Rougier E, Mori H, Viswanathan H (2015a) Fracture-permeability behavior of shale. J Unconv Oil Gas Resour 11:27–43

    Article  Google Scholar 

  • Carey JW, Rougier E, Lei Z, Viswanathan H (2015b) Experimental investigation of fracturing of shale with water. In: 49th US rock mechanics/geomechanics symposium, American Rock Mechanics Association

  • Catalano E, Chareyre B, Barthélemy E (2014) Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects. Int J Numer Anal Methods Geomech 38(1):51–71

    Article  Google Scholar 

  • Chau VT, Bažant ZP, Su Y (2016) Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale. Philos Trans R Soc A 374(2078):20150,418

    Article  Google Scholar 

  • Cho Y, Ozkan E, Apaydin OG (2013) Pressure-dependent natural-fracture permeability in shale and its effect on shale-gas well production. SPE Reserv Eval Eng 16(02):216–228

    Google Scholar 

  • Choo J, Sun W (2018) Coupled phase-field and plasticity modeling of geological materials: from brittle fracture to ductile flow. Comput Methods Appl Mech Eng 330:1–32

    Article  Google Scholar 

  • Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  • Cusatis G, Schauffert EA (2009) Cohesive crack analysis of size effect. Eng Fract Mech 76(14):2163–2173

    Article  Google Scholar 

  • Cusatis G, Zhou X (2013) High-order microplane theory for quasi-brittle materials with multiple characteristic lengths. J Eng Mech 140(7):04014,046

    Article  Google Scholar 

  • Cusatis G, Bažant ZP, Cedolin L (2003a) Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. J Eng Mech 129(12):1439–1448

    Article  Google Scholar 

  • Cusatis G, Bažant ZP, Cedolin L (2003b) Confinement-shear lattice model for concrete damage in tension and compression: II. Computation and validation. J Eng Mech 129(12):1449–1458

    Article  Google Scholar 

  • Cusatis G, Mencarelli A, Pelessone D, Baylot J (2011a) Lattice discrete particle model (LDPM) for failure behavior of concrete. II: calibration and validation. Cem Concr Compos 33(9):891–905

    Article  Google Scholar 

  • Cusatis G, Pelessone D, Mencarelli A (2011b) Lattice discrete particle model (LDPM) for failure behavior of concreteI: theory. Cem Concr Compos 33(9):881–890

    Article  Google Scholar 

  • Cusatis G, Rezakhani R, Schauffert EA (2017) Discontinuous cell method (dcm) for the simulation of cohesive fracture and fragmentation of continuous media. Eng Fract Mech 170:1–22

    Article  Google Scholar 

  • Davy CA, Skoczylas F, Barnichon JD, Lebon P (2007) Permeability of macro-cracked argillite under confinement: gas and water testing. Phys Chem Earth Parts A B C 32(8):667–680

    Article  Google Scholar 

  • Detournay E, Cheng AHD (1993) Fundamentals of poroelasticity. Chapter 5 in comprehensive rock engineering: principles, practice and projects, II, pp 113–171

  • Detwiler RL (2010) Permeability alteration due to mineral dissolution in partially saturated fractures. J Geophys Res Solid Earth 115(B9)

  • Di Luzio G, Cusatis G (2009) Hygro-thermo-chemical modeling of high-performance concrete. II: Numerical implementation, calibration, and validation. Cem Concr Compos 31(5):309–324

    Article  Google Scholar 

  • Elkhoury JE, Ameli P, Detwiler RL (2013) Dissolution and deformation in fractured carbonates caused by flow of co 2-rich brine under reservoir conditions. Int J Greenh Gas Control 16:S203–S215

    Article  Google Scholar 

  • Falk K, Coasne B, Pellenq R, Ulm FJ, Bocquet L (2015) Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nat Commun 6:6949

    Article  Google Scholar 

  • Frash LP, Carey JW, Lei Z, Rougier E, Ickes T, Viswanathan HS (2016) High-stress triaxial direct-shear fracturing of utica shale and in situ X-ray microtomography with permeability measurement. J Geophys Res Solid Earth 121(7):5493–5508

    Article  Google Scholar 

  • Frash LP, Carey JW, Ickes T, Viswanathan HS (2017) Caprock integrity susceptibility to permeable fracture creation. Int J Greenh Gas Control 64:60–72

    Article  Google Scholar 

  • Grassl P, Bolander J (2016) Three-dimensional network model for coupling of fracture and mass transport in quasi-brittle geomaterials. Materials 9(9):782

    Article  Google Scholar 

  • Grassl P, Fahy C, Gallipoli D, Wheeler SJ (2015) On a 2d hydro-mechanical lattice approach for modelling hydraulic fracture. J Mech Phys Solids 75:104–118

    Article  Google Scholar 

  • Gutierrez M, Øino L, Nygård R (2000) Stress-dependent permeability of a de-mineralised fracture in shale. Mar Pet Geol 17(8):895–907

    Article  Google Scholar 

  • Hyman J, Jiménez-Martínez J, Viswanathan H, Carey JW, Porter M, Rougier E, Karra S, Kang Q, Frash L, Chen L (2016) Understanding hydraulic fracturing: a multi-scale problem. Philos Trans R Soc A 374(2078):20150426

    Article  Google Scholar 

  • Ilgen AG, Heath JE, Akkutlu IY, Bryndzia LT, Cole DR, Kharaka YK, Kneafsey TJ, Milliken KL, Pyrak-Nolte LJ, Suarez-Rivera R (2017) Shales at all scales: exploring coupled processes in mudrocks. Earth Sci Rev

  • Jin C, Salviato M, Li W, Cusatis G (2017) Elastic microplane formulation for transversely isotropic materials. J Appl Mech 84(1):011,001

    Article  Google Scholar 

  • Jin L, Zoback M (2017) Fully coupled nonlinear fluid flow and poroelasticity in arbitrarily fractured porous media: a hybrid-dimensional computational model. J Geophys Res Solid Earth 122(10):7626–7658

    Article  Google Scholar 

  • Jin Z, Li W, Jin C, Hambleton J, Cusatis G (2018) Anisotropic elastic, strength, and fracture properties of marcellus shale. Int J Rock Mech Min Sci 109:124–137

    Article  Google Scholar 

  • Jobmann M, Wilsnack T, Voigt HD (2010) Investigation of damage-induced permeability of opalinus clay. Int J Rock Mech Min Sci 47(2):279–285

    Article  Google Scholar 

  • Kim K, Rutqvist J, Nakagawa S, Birkholzer J (2017) Tough-rbsn simulator for hydraulic fracture propagation within fractured media: model validations against laboratory experiments. Comput Geosci 108:72–85

    Article  Google Scholar 

  • Kluge C, Blöcher G, Milsch H, Hofmann H, Nicolas A, Li Z, Fortin J (2017) Sustainability of fractured rock permeability under varying pressure. In: Poromechanics VI, pp 1192–1199

  • Kozicki J, Donzé F (2008) A new open-source software developed for numerical simulations using discrete modeling methods. Comput Methods Appl Mech Eng 197(49–50):4429–4443

    Article  Google Scholar 

  • Li C, Caner FC, Chau VT, Bažant ZP (2017a) Spherocylindrical microplane constitutive model for shale and other anisotropic rocks. J Mech Phys Solids 103:155–178

    Article  Google Scholar 

  • Li W (2018) Computational and experimental characterization of the behaviors of anisotropic quasi-brittle materials: Shale and textile composites. PhD Thesis, Northwestern University

  • Li W, Jin C, Cusatis G (2016) Integrated experimental and computational characterization of shale at multiple length scales. In: New frontiers in oil and gas exploration. Springer, New York, pp 389–434

    Chapter  Google Scholar 

  • Li W, Bousikhane F, Carey JW, Cusatis G (2017b) Computational analysis of the fracture-permeability behavior of shale. In: Poromechanics VI, pp 1200–1207

  • Li W, Bousikhane F, Carey JW, Cusatis G (2017c) Discrete modeling of the fracture-permeability behavior of shale. In: 51st US rock mechanics/geomechanics symposium, American Rock Mechanics Association

  • Li W, Rezakhani R, Jin C, Zhou X, Cusatis G (2017d) A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. Int J Numer Anal Methods Geomech 41(14):1494–1522

    Article  Google Scholar 

  • Li W, Jin Z, Cusatis G (2018) Size effect analysis for the characterization of marcellus shale quasi-brittle fracture properties. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-018-1570-6

  • Massey BS, Ward-Smith J (1998) Mechanics of fluids, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Miehe C, Mauthe S, Teichtmeister S (2015) Minimization principles for the coupled problem of darcy-biot-type fluid transport in porous media linked to phase field modeling of fracture. J Mech Phys Solids 82:186–217

    Article  Google Scholar 

  • Mikelic A, Wheeler MF, Wick T (2015) A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. Multiscale Model Simul 13(1):367–398

    Article  Google Scholar 

  • Mohammadnejad T, Khoei A (2013) An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem Anal Des 73:77–95

    Article  Google Scholar 

  • Nikolic M, Ibrahimbegovic A, Miscevic P (2016) Discrete element model for the analysis of fluid-saturated fractured poro-plastic medium based on sharp crack representation with embedded strong discontinuities. Comput Methods Appl Mech Eng 298:407–427

    Article  Google Scholar 

  • Noiriel C, Renard F, Doan ML, Gratier JP (2010) Intense fracturing and fracture sealing induced by mineral growth in porous rocks. Chem Geol 269(3):197–209

    Article  Google Scholar 

  • Nygård R, Gutierrez M, Bratli RK, Høeg K (2006) Brittle-ductile transition, shear failure and leakage in shales and mudrocks. Mar Pet Geol 23(2):201–212

    Article  Google Scholar 

  • Obliger A, Ulm FJ, Pellenq RJM (2018) Impact of nanoporosity on hydrocarbon transport in shales organic matter. Nano Lett

  • Pelessone D (2006) MARS, modeling and analysis of the response of structures—users manual. ES3 Inc, San Diego

    Google Scholar 

  • Potyondy D, Cundall P (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  • Rezakhani R, Cusatis G (2016) Asymptotic expansion homogenization of discrete fine-scale models with rotational degrees of freedom for the simulation of quasi-brittle materials. J Mech Phys Solids 88:320–345

    Article  Google Scholar 

  • Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys 14(2):227–241

    Article  Google Scholar 

  • Robinson M, Ramaioli M, Luding S (2014) Fluid-particle flow simulations using two-way-coupled mesoscale sph-dem and validation. Int J Multiph Flow 59:121–134

    Article  Google Scholar 

  • Rutqvist J, Freifeld B, Min KB, Elsworth D, Tsang Y (2008) Analysis of thermally induced changes in fractured rock permeability during 8 years of heating and cooling at the yucca mountain drift scale test. Int J Rock Mech Min Sci 45(8):1373–1389

    Article  Google Scholar 

  • Salimzadeh S, Khalili N (2015) A three-phase xfem model for hydraulic fracturing with cohesive crack propagation. Comput Geotech 69:82–92

    Article  Google Scholar 

  • Smith J, Cusatis G, Pelessone D, Landis E, O’Daniel J, Baylot J (2014) Discrete modeling of ultra-high-performance concrete with application to projectile penetration. Int J Impact Eng 65:13–32

    Article  Google Scholar 

  • Soeder DJ (1988) Porosity and permeability of eastern devonian gas shale. SPE Form Eval 3(01):116–124

    Article  Google Scholar 

  • Su K, Sanz Perl Y, Onaisi A, Pourpark H, Vidal-Gilbert S (2017) Experimental study of hydromechanical behavior of fracture of vaca muerta gas shale. In: 51st US rock mechanics/geomechanics symposium, American Rock Mechanics Association

  • Suarez-Rivera R, Fjær E (2013) Evaluating the poroelastic effect on anisotropic, organic-rich, mudstone systems. Rock Mech Rock Eng 46(3):569–580

    Article  Google Scholar 

  • Ulven OI, Sun W (2017) Capturing the two-way hydromechanical coupling effect on fluid-driven fracture in a dual-graph lattice beam model. Int J Numer Anal Methods Geomech

  • Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton

    Google Scholar 

  • Wang K, Sun W (2016) A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain. Comput Methods Appl Mech Eng 304:546–583

    Article  Google Scholar 

  • Witherspoon PA, Wang JS, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Article  Google Scholar 

  • Yeo Id, De Freitas M, Zimmerman R (1998) Effect of shear displacement on the aperture and permeability of a rock fracture. Int J Rock Mech Min Sci 35(8):1051–1070

    Article  Google Scholar 

  • Zhang J, Kamenov A, Zhu D, Hill A (2013) Laboratory measurement of hydraulic fracture conductivities in the barnett shale. In: IPTC 2013: international petroleum technology conference

  • Zhou T, Zhang S, Feng Y, Shuai Y, Zou Y, Li N (2016) Experimental study of permeability characteristics for the cemented natural fractures of the shale gas formation. J Nat Gas Sci Eng 29:345–354

    Article  Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23(1):1–30

    Article  Google Scholar 

Download references

Acknowledgements

The work of WL and GC was supported by the Center for Sustainable Engineering of Geological and Infrastructure Materials (SEGIM) and the Quest high performance computing facility at Northwestern University. The work of XZ was supported with ES3 R&D resources. The work of WC and LF was supported by the Department of Energy’s Basic Energy Sciences program under Grant DE-AC52-06NA25396/FWP-LANL20171450.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Cusatis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhou, X., Carey, J.W. et al. Multiphysics Lattice Discrete Particle Modeling (M-LDPM) for the Simulation of Shale Fracture Permeability. Rock Mech Rock Eng 51, 3963–3981 (2018). https://doi.org/10.1007/s00603-018-1625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1625-8

Keywords

Navigation