Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 5/2019

15.11.2018 | Original Paper

A Nonlinear Creep Damage Coupled Model for Rock Considering the Effect of Initial Damage

verfasst von: Rongbin Hou, Kai Zhang, Jing Tao, Xinran Xue, Yanlong Chen

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The experimental results show that initial damage has a clear effect on the creep behavior of rock. However, among the current creep models for rock, few consider the effect of the initial damage state. In the present study, a new nonlinear creep damage model for rock is proposed based on multi-loading creep tests of sandstone with different initial damage levels. The new model is composed of four components, a Hooke body, a Kelvin body, an improved viscous element, and a new nonlinear visco-plastic damage component. The creep damage model can not only describe the three typical creep stages (primary creep, secondary creep and tertiary creep) but also show the effect of initial damage on the creep failure stress. The parameters of the nonlinear creep damage model are obtained using the nonlinear least squares method. A unified set of creep parameters is proposed to predict the creep behavior of sandstone in different initial damage states. The agreement between the experimental data and numerical prediction demonstrates the applicability of the proposed model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Cao P, Wen YD, Wang YX, Yuan HP, Yuan BX (2016) Study on nonlinear damage creep constitutive model for high-stress soft rock. Environ Earth Sci 75:900CrossRef Cao P, Wen YD, Wang YX, Yuan HP, Yuan BX (2016) Study on nonlinear damage creep constitutive model for high-stress soft rock. Environ Earth Sci 75:900CrossRef
Zurück zum Zitat Chen YJ, Pan CL, Cao P, Wang WX (2003) A new mechanical model for soft rock rheology. Rock Soil Mech 24(2):209–214 Chen YJ, Pan CL, Cao P, Wang WX (2003) A new mechanical model for soft rock rheology. Rock Soil Mech 24(2):209–214
Zurück zum Zitat Debernardi D, Barla G (2009) New viscoplastic model for design analysis of tunnels in squeezing conditions. Rock Mech Rock Eng 42(2):259–288CrossRef Debernardi D, Barla G (2009) New viscoplastic model for design analysis of tunnels in squeezing conditions. Rock Mech Rock Eng 42(2):259–288CrossRef
Zurück zum Zitat Fan QZ, Li SC, Gao YF (2007) Experimental study on creep properties of soft rock under triaxial compression. Chin J Rock Mech Eng 26(7):1381–1385 Fan QZ, Li SC, Gao YF (2007) Experimental study on creep properties of soft rock under triaxial compression. Chin J Rock Mech Eng 26(7):1381–1385
Zurück zum Zitat Gatelier N, Pellet F, Loret B (2002) Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. Int J Rock Mech Min Sci 39(3):335–354CrossRef Gatelier N, Pellet F, Loret B (2002) Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. Int J Rock Mech Min Sci 39(3):335–354CrossRef
Zurück zum Zitat Jiang Q, Cui J, Jing C (2012) Time-dependent damage investigation of rock mass in an in-situ experimental tunnel. Mterials 5(8):1389–1403CrossRef Jiang Q, Cui J, Jing C (2012) Time-dependent damage investigation of rock mass in an in-situ experimental tunnel. Mterials 5(8):1389–1403CrossRef
Zurück zum Zitat Kim JS, Lee KS, Cho WJ, Choi HJ, Cho GC (2015) A comparative evaluation of stress–strain and acoustic emission methods for quantitative damage assessments of brittle rock. Rock Mech Rock Eng 48(2):495–508CrossRef Kim JS, Lee KS, Cho WJ, Choi HJ, Cho GC (2015) A comparative evaluation of stress–strain and acoustic emission methods for quantitative damage assessments of brittle rock. Rock Mech Rock Eng 48(2):495–508CrossRef
Zurück zum Zitat Lampton M (1997) Damping-undamping strategies for the Levenberg–Marquardt nonlinear least squares method. Comput Phys 11(1):110–115CrossRef Lampton M (1997) Damping-undamping strategies for the Levenberg–Marquardt nonlinear least squares method. Comput Phys 11(1):110–115CrossRef
Zurück zum Zitat Li YS, Xia CC (2000) Time-dependent tests on intact rocks in uniaxial compression. Int J Rock Mech Min Sci 37(3):467–475CrossRef Li YS, Xia CC (2000) Time-dependent tests on intact rocks in uniaxial compression. Int J Rock Mech Min Sci 37(3):467–475CrossRef
Zurück zum Zitat Li HB, Liu MC, Xing WB, Shao S, Zhou JW (2017) Failure mechanisms and evolution assessment of the excavation damaged zones in a large-scale and deeply buried underground powerhouse. Rock Mech Rock Eng 50(7):1883–1900CrossRef Li HB, Liu MC, Xing WB, Shao S, Zhou JW (2017) Failure mechanisms and evolution assessment of the excavation damaged zones in a large-scale and deeply buried underground powerhouse. Rock Mech Rock Eng 50(7):1883–1900CrossRef
Zurück zum Zitat Liu HZ, Xie HQ, He JD, Xiao ML, Zhuo L (2017) Nonlinear creep damage constitutive model for soft rocks. Mech Time Depend Mat 21(1):73–96CrossRef Liu HZ, Xie HQ, He JD, Xiao ML, Zhuo L (2017) Nonlinear creep damage constitutive model for soft rocks. Mech Time Depend Mat 21(1):73–96CrossRef
Zurück zum Zitat Ma LJ, Wang MY, Zhang N, Fan PX, Li J (2017) A variable-parameter creep damage model incorporating the effects of loading frequency for rock salt and its application in a bedded storage cavern. Rock Mech Rock Eng 50(9):1–15CrossRef Ma LJ, Wang MY, Zhang N, Fan PX, Li J (2017) A variable-parameter creep damage model incorporating the effects of loading frequency for rock salt and its application in a bedded storage cavern. Rock Mech Rock Eng 50(9):1–15CrossRef
Zurück zum Zitat Martin CD, Chandler (1994) The progressive fracture of lac du bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659CrossRef Martin CD, Chandler (1994) The progressive fracture of lac du bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659CrossRef
Zurück zum Zitat Ömer A, Ito T, Özbay U, Kwasniewski M, Shariar K, Okuno T, Özgenoğlu A, Malan DF, Okada T (2014) ISRM suggested methods for determining the creep characteristics of rock. Rock Mech Rock Eng 47(1):275–290CrossRef Ömer A, Ito T, Özbay U, Kwasniewski M, Shariar K, Okuno T, Özgenoğlu A, Malan DF, Okada T (2014) ISRM suggested methods for determining the creep characteristics of rock. Rock Mech Rock Eng 47(1):275–290CrossRef
Zurück zum Zitat Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43(4):582–592CrossRef Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43(4):582–592CrossRef
Zurück zum Zitat Song F, Zhao FS, Lu QZ (2005) Study on rheological properties and model for gypsum breccias. Chin J Rock Mech Eng 24(15):2659–2664 Song F, Zhao FS, Lu QZ (2005) Study on rheological properties and model for gypsum breccias. Chin J Rock Mech Eng 24(15):2659–2664
Zurück zum Zitat Sun J (2007) Rock rheological mechanics and its advance in engineering applications. Chin J Rock Mech Eng 26(6):1081–1106 Sun J (2007) Rock rheological mechanics and its advance in engineering applications. Chin J Rock Mech Eng 26(6):1081–1106
Zurück zum Zitat Wang RB, Xu WY, Wang W, Zhang JC (2013) A nonlinear creep damage model for brittle rocks based on time-dependent damage. Eur J Environ Civ Eng 17(sup1):s111–s125CrossRef Wang RB, Xu WY, Wang W, Zhang JC (2013) A nonlinear creep damage model for brittle rocks based on time-dependent damage. Eur J Environ Civ Eng 17(sup1):s111–s125CrossRef
Zurück zum Zitat Weng MC, Tsai LS, Hsieh YM, Jeng FS (2010) An associated elastic–viscoplastic constitutive model for sandstone involving shear-induced volumetric deformation. Int J Rock Mech Min Sci 47(8):1263–1273CrossRef Weng MC, Tsai LS, Hsieh YM, Jeng FS (2010) An associated elastic–viscoplastic constitutive model for sandstone involving shear-induced volumetric deformation. Int J Rock Mech Min Sci 47(8):1263–1273CrossRef
Zurück zum Zitat Wu F, Liu JF, Wang J (2015) An improved Maxwell creep model for rock based on variable-order fractional derivatives. Environ Earth Sci 73(11):6965–6971CrossRef Wu F, Liu JF, Wang J (2015) An improved Maxwell creep model for rock based on variable-order fractional derivatives. Environ Earth Sci 73(11):6965–6971CrossRef
Zurück zum Zitat Xia CC, Wang XD, Xu CB, Zhang CS (2008) Method to identify rheological models by unified rheological model theory and case study. Chin J Rock Mech Eng 27(8):1594–1600 Xia CC, Wang XD, Xu CB, Zhang CS (2008) Method to identify rheological models by unified rheological model theory and case study. Chin J Rock Mech Eng 27(8):1594–1600
Zurück zum Zitat Xiao JQ, Ding DX, Jiang FL, Gen XU (2009) Parameter estimation method of fatigue damage model of rock. Rock Soil Mech 30(6):1635–1638 Xiao JQ, Ding DX, Jiang FL, Gen XU (2009) Parameter estimation method of fatigue damage model of rock. Rock Soil Mech 30(6):1635–1638
Zurück zum Zitat Xie HP, Ju Y, Dong YL (1997) Discussion about “elastic modulus method” in the classic definition of damage. Mech Pract 19(2):1–5 Xie HP, Ju Y, Dong YL (1997) Discussion about “elastic modulus method” in the classic definition of damage. Mech Pract 19(2):1–5
Zurück zum Zitat Xu WY, Yang SQ, Chu WJ (2006a) Nonlinear viscoelasto-plastic rheological model (hohai model) of rock and its engineering application. Chin J Rock Mech Eng 25(3):433–447 Xu WY, Yang SQ, Chu WJ (2006a) Nonlinear viscoelasto-plastic rheological model (hohai model) of rock and its engineering application. Chin J Rock Mech Eng 25(3):433–447
Zurück zum Zitat Xu WY, Zhou JW, Yang SQ, Shi C (2006b) Study on creep damage constitutive relation of greenschist specimen. Chin J Rock Mech Eng 25(s1):3093–3097 Xu WY, Zhou JW, Yang SQ, Shi C (2006b) Study on creep damage constitutive relation of greenschist specimen. Chin J Rock Mech Eng 25(s1):3093–3097
Zurück zum Zitat Xu T, Tang CA, Zhao J, Li LC, Heap MJ (2012) Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks. Geophys J Int 189(3):1781–1796CrossRef Xu T, Tang CA, Zhao J, Li LC, Heap MJ (2012) Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks. Geophys J Int 189(3):1781–1796CrossRef
Zurück zum Zitat Xu T, Xu Q, Deng ML, Ma TH, Yang TH, Tang CA (2014) A numerical analysis of rock creep-induced slide: a case study from Jiweishan Mountain, China. Environ Earth Sci 72(6):2111–2128CrossRef Xu T, Xu Q, Deng ML, Ma TH, Yang TH, Tang CA (2014) A numerical analysis of rock creep-induced slide: a case study from Jiweishan Mountain, China. Environ Earth Sci 72(6):2111–2128CrossRef
Zurück zum Zitat Yan P, Lu WB, Chen M, Hu YG, Zhou CB, Wu XX (2015) Contributions of in-situ stress transient redistribution to blasting excavation damage zone of deep tunnels. Rock Mech Rock Eng 48(2):715–726CrossRef Yan P, Lu WB, Chen M, Hu YG, Zhou CB, Wu XX (2015) Contributions of in-situ stress transient redistribution to blasting excavation damage zone of deep tunnels. Rock Mech Rock Eng 48(2):715–726CrossRef
Zurück zum Zitat Yang SQ, Cheng L (2011) Non-stationary and nonlinear visco-elastic shear creep model for shale. Int J Rock Mech Min Sci 48(6):1011–1020CrossRef Yang SQ, Cheng L (2011) Non-stationary and nonlinear visco-elastic shear creep model for shale. Int J Rock Mech Min Sci 48(6):1011–1020CrossRef
Zurück zum Zitat Yang CH, Daemen JJK, Yin JH (1999) Experimental investigation of creep behavior of salt rock. Int J Rock Mech Min Sci 36(2):233–242CrossRef Yang CH, Daemen JJK, Yin JH (1999) Experimental investigation of creep behavior of salt rock. Int J Rock Mech Min Sci 36(2):233–242CrossRef
Zurück zum Zitat Yang CH, Chen F, Zeng YJ (2002) Investigation of creep damage constitutive theory of salt rock. Chin J Rock Mech Eng 21(11):1602–1604 Yang CH, Chen F, Zeng YJ (2002) Investigation of creep damage constitutive theory of salt rock. Chin J Rock Mech Eng 21(11):1602–1604
Zurück zum Zitat Zhang QY, Yang WD, Zhang JG, Yang CH (2009) Variable parameters-based creep damage constitutive model and its engineering application. Chin J Rock Mech Eng 28(4):732–739 Zhang QY, Yang WD, Zhang JG, Yang CH (2009) Variable parameters-based creep damage constitutive model and its engineering application. Chin J Rock Mech Eng 28(4):732–739
Zurück zum Zitat Zhang K, Zhou H, Shao JF (2013) An experimental investigation and an elastoplastic constitutive model for a porous rock. Rock Mech Rock Eng 46(6):1499–1511CrossRef Zhang K, Zhou H, Shao JF (2013) An experimental investigation and an elastoplastic constitutive model for a porous rock. Rock Mech Rock Eng 46(6):1499–1511CrossRef
Zurück zum Zitat Zhang K, Zhang GM, Hou RB, Wu Y, Zhou HQ (2015) Stress evolution in roadway rock bolts during mining in a fully mechanized longwall face and an evaluation of rock bolt support design. Rock Mech Rock Eng 48(1):333–344CrossRef Zhang K, Zhang GM, Hou RB, Wu Y, Zhou HQ (2015) Stress evolution in roadway rock bolts during mining in a fully mechanized longwall face and an evaluation of rock bolt support design. Rock Mech Rock Eng 48(1):333–344CrossRef
Zurück zum Zitat Zhao YL, Cao P, Wen YD, Wang YX, Chai HB (2008) Elastovisco-plastic rheological experiment and nonlinear rheological model of rocks. Chin J Rock Mech Eng 27(3):477–486 Zhao YL, Cao P, Wen YD, Wang YX, Chai HB (2008) Elastovisco-plastic rheological experiment and nonlinear rheological model of rocks. Chin J Rock Mech Eng 27(3):477–486
Zurück zum Zitat Zhao YL, Wang YX, Wang WJ, Wan W, Tang JZ (2017) Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int J Rock Mech Min Sci 93:66–75CrossRef Zhao YL, Wang YX, Wang WJ, Wan W, Tang JZ (2017) Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int J Rock Mech Min Sci 93:66–75CrossRef
Zurück zum Zitat Zhou H, Jia Y, Shao JF (2008) A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks. Int J Rock Mech Min Sci 45(8):1237–1251CrossRef Zhou H, Jia Y, Shao JF (2008) A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks. Int J Rock Mech Min Sci 45(8):1237–1251CrossRef
Zurück zum Zitat Zhou H, Hu DW, Zhang F, Shao JF (2011) A thermo-plastic/viscoplastic damage model for geomaterials. Acta Mech Solida Sin 24(3):195–208CrossRef Zhou H, Hu DW, Zhang F, Shao JF (2011) A thermo-plastic/viscoplastic damage model for geomaterials. Acta Mech Solida Sin 24(3):195–208CrossRef
Zurück zum Zitat Zhou H, Hu DW, Zhang F, Shao JF, Feng XT (2016) Laboratory investigations of the hydro-mechanical–chemical coupling behaviour of sandstone in CO2 storage in aquifers. Rock Mech Rock Eng 49(2):417–426CrossRef Zhou H, Hu DW, Zhang F, Shao JF, Feng XT (2016) Laboratory investigations of the hydro-mechanical–chemical coupling behaviour of sandstone in CO2 storage in aquifers. Rock Mech Rock Eng 49(2):417–426CrossRef
Metadaten
Titel
A Nonlinear Creep Damage Coupled Model for Rock Considering the Effect of Initial Damage
verfasst von
Rongbin Hou
Kai Zhang
Jing Tao
Xinran Xue
Yanlong Chen
Publikationsdatum
15.11.2018
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 5/2019
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-018-1626-7

Weitere Artikel der Ausgabe 5/2019

Rock Mechanics and Rock Engineering 5/2019 Zur Ausgabe