Skip to main content
Log in

Electrochemical oxidation of sulfur-containing amino acids on an electrode modified with multi-walled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

MWNT-modified electrodes are introduced for the voltammetric determination of sulfur-containing amino acids. The morphology of the electrode surface has been characterized by atomic force microscopy. The MWNT layer consists of deeply intertwined vermicular structures with the average diameter of 25 nm. Cysteine, glutathione and methionine are oxidized on the electrode while only cysteine gives signals on the glassy carbon (GC) electrode. The application of such electrodes leads to a decreased overpotential and increase of oxidation currents for cysteine in comparison with a bare GC electrode. The schemes of oxidation are proposed. A decrease of the lower limit of determination and an enlargement of the analytical range for antioxidants were obtained. A simple, fast and accurate procedure for the voltammetric determination of methionine in pharmaceuticals has been developed and can be recommended for quality control purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Granot E, Kohen R (2004) Oxidative stress in childhood—in health and disease states. Clin Nutr 23:3

    Article  CAS  Google Scholar 

  2. Chevion S, Roberts VA, Chevion M (2000) The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic Biol Med 28:860

    Article  CAS  Google Scholar 

  3. Feroci G, Fini A (2007) Voltammetric investigation of the interactions between superoxide ion and some sulfur amino acids. Inorg Chim Acta 360:1023

    Article  CAS  Google Scholar 

  4. Deneke SM (2000) Thiol-based antioxidants. Curr Top Cell Regul 36:151

    Article  CAS  Google Scholar 

  5. Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333:19

    Article  CAS  Google Scholar 

  6. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916

    Article  CAS  Google Scholar 

  7. Levine RL, Moskovitz J, Stadtman ER (2000) Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life 50:301

    Article  CAS  Google Scholar 

  8. Perez-Ruiz T, Martinez-Lozano C, Tomas V, Martin J (2002) Flow injection chemiluminescent method for the successive determination of L-cysteine and L-cystine using photogenerated tris(2,2′-bipyridyl) ruthenium (III). Talanta 58:987

    Article  CAS  Google Scholar 

  9. Nie L, Ma H, Sun M, Li X, Su M, Liang S (2003) Direct chemiluminescence determination of cysteine in human serum using quinine-Ce(IV) system. Talanta 59:959

    Article  CAS  Google Scholar 

  10. Patsoukis N, Georgiou DC (2005) Fluorometric determination of thiol redox state. Anal Bioanal Chem 383:923

    Article  CAS  Google Scholar 

  11. Shu-Cai L, Hong W, Zhi-Min Z, Xian Z, Hua-Shan Z (2002) Direct spectrofluorimetric determination of glutathione in biological samples using 5-maleimidyl-2-(m-methylphenyl) benzoxazole. Anal Chim Acta 451:211

    Article  Google Scholar 

  12. Jingui L, Dengbai L, Mimi L, Wei C (2004) Spectrophotometric determination of cysteine on reaction with phosphorus molybdenum geteropolyacid. J South-Cent Univ Nat Natur Sci 23:5

    Google Scholar 

  13. Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R (2003) An improved HPLC measurement for GSH and GSSG in human blood. Free Radic Biol Med 35:1365

    Article  CAS  Google Scholar 

  14. Ohmori S, Kawase T, Higashiura M, Chisaka Y, Nakata K, Yamasaki Y (2001) High-performance liquid chromatographic method to analyze picomole levels of glutathione, cysteine and cysteinylglycine and its application to pre-cancerous rat livers. J Chromatogr B 762:25

    Article  CAS  Google Scholar 

  15. Shu-Cai L, Hong W, Zhi-Ming Z, Hua-Shan Z (2005) Determination of thiol by high-perfomance liquid chromatography and fluorescence detection with 5-metil-(2-m-iodoacetilaminophenil)benzoxazole. Anal Bioanal Chem 381:1095

    Article  Google Scholar 

  16. Bakhsh RJ, Reza O, Mansoure K (2005) Differential pulse voltammetry determination of L-cysteine with ferrocene-modified carbon paste electrode. Bull Chem Soc Jap 78:818

    Article  Google Scholar 

  17. Kuhnline CD, Gangel MG, Hulvey MK, Martin RS (2006) Detecting thiols in a microchip device using micromolded carbon ink electrodes modified with cobalt phthalocyanine. Analyst 131:202

    Article  CAS  Google Scholar 

  18. Ricci F, Arduini F, Tuta CS, Sozzo U, Moscone D, Amine A, Palleschi G (2006) Glutathione amperometric detection based on a thiol-disulfide exchange reaction. Anal Chim Acta 558:164

    Article  CAS  Google Scholar 

  19. Budnikov GK, Ziyatdinova GK, Valitova Ya R (2004) Electrochemical determination of glutathione. J Anal Chem 59:573

    Article  CAS  Google Scholar 

  20. Nugent JM, Santhanam KSV, Rubio A, Ajayan PM (2001) Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett 1:87

    Article  CAS  Google Scholar 

  21. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J Am Chem Soc 25:2408

    Article  Google Scholar 

  22. Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem 73:915

    Article  CAS  Google Scholar 

  23. Tu X, Xie Q, Huang Z, Jia X, Ye M (2008) Electrocatalytic oxidation and sensitive determination of L -cysteine at a poly(aminoquinone)-carbon nanotubes hybrid film modified glassy carbon electrode. Microchim Acta 162:219

    Article  CAS  Google Scholar 

  24. Salimi A, Hallaj R (2005) Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine, l-cysteine and glutathione. Talanta 66:967

    Article  CAS  Google Scholar 

  25. Abdullin TI, Nikitina II, Ishmukhametova DG, Budnikov GK, Konovalova OA, Salakhov MKh (2007) Carbon nanotube-modified electrodes for electrochemical DNA-sensors. J Anal Chem 62:559

    Article  Google Scholar 

  26. Gao Z-N, Yao H-Q, Liu W-Y (2005) Study on electrocatalytic oxidation of L-cysteine at glassy carbon electrode by (FcM)TMA and its electrochemical kinetics. Electroanalysis 17:619

    Article  CAS  Google Scholar 

  27. Hu H, Bhowmik P, Zhao B, Hamon MA, Itkis ME, Haddon RC (2001) Determination of the acidic sites of purified single-walled carbon nanotubes by acid-base titration. Chem Phys Lett 345:25

    Article  CAS  Google Scholar 

  28. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim Acta 50:3049

    Article  CAS  Google Scholar 

  29. Azamian BR, Davis JJ, Coleman KS, Bagshaw CB, Green MLH (2002) Bioelectrochemical single-walled carbon nanotubes. J Am Chem Soc 124:12664

    Article  CAS  Google Scholar 

  30. Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G (2003) Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal Chem 75:5413

    Article  CAS  Google Scholar 

  31. Ziyatdinova GK, Grigor’eva LV, Budnikov GK (2007) Coulometric determination of sulfur-containing amino acids using halogens as oxidizing titrants. J Anal Chem 62:1176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. T. Abdullin for the help in preparation of CNT suspension. Financial support of RFBR 09-03-00309-а is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guzel Ziyatdinova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziyatdinova, G., Grigor’eva, L., Morozov, M. et al. Electrochemical oxidation of sulfur-containing amino acids on an electrode modified with multi-walled carbon nanotubes. Microchim Acta 165, 353–359 (2009). https://doi.org/10.1007/s00604-009-0142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0142-6

Keywords

Navigation