Skip to main content
Log in

Electrocatalytic activity of a novel titanium-supported nanoporous gold catalyst for glucose oxidation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel Ti-supported gold catalyst (nanoAu/Ti) with a nanoporous 3D texture has been fabricated using a hydrothermal method. Au particles were stably deposited on the Ti surface from the mixture of aqueous tetrachlororoauric acid and polyethylene glycol at 180 °C. Voltammetry (CV) and chronoamperometry were used to characterize the nanoAu/Ti electrode and assess its electroactivity towards glucose oxidation. Compared to polycrystalline Au, the nanoAu/Ti electrode shows similar CV profiles in alkaline solution. However, in an alkaline solution containing 10 mM glucose, the nanoAu/Ti electrode presents much higher anodic current densities and a more negative onset potential (ca. −0.75 V) for glucose oxidation than a bulk Au electrode. Analysis for Tafel plot of the nanoAu/Ti electrode shows that electro-oxidation of glucose takes place via a one-electron rate-determining step. Results indicate a high and (relatively) stable electrocatalytic activity of the nanoAu/Ti for glucose oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurniawan F, Tsakova V, Mirsky VM (2006) Gold Nanoparticles in Nonenzymatic Electrochemical Detection of Sugars. Electroanalysis 18:1937–1942

    Article  CAS  Google Scholar 

  2. Kerzenmacher S, Ducre’e J, Zengerle R, von Stetten F (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance. J Power Sources 182:66–75

    Article  CAS  Google Scholar 

  3. Yuhashi N, Tomiyama M, Okuda J, Igarashi S, Ikebukuro K, Sode K (2005) Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase. Biosens Bioelectron 20:2145–50

    Article  CAS  Google Scholar 

  4. Kerzenmacher S, Ducree J, Zengerle R, von Stetten F (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources 182:1–17

    Article  CAS  Google Scholar 

  5. Sato F, Togo M, Kamrul Islam M, Matsue T, Kosuge J, Fukasaku N, Kurosawa S, Nishizawa M (2005) Enzyme-based glucose fuel cell using Vitamin K3-immobilized polymer as an electron mediator. Electrochem Commun 7:643–647

    Article  CAS  Google Scholar 

  6. Kuwahara T, Ohta H, Kondo M, Shimomura M (2008) Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell. Bioelectrochem doi:10.1016/j.bioelechem.2008.07.002

  7. Wang K, Xu J-J, Chen H-Y (2005) A novel glucose biosensor based on the nanoscaled cobalt phthalocyanine–glucose oxidase biocomposite. Biosens Bioelectron 20:1388–1396

    Article  CAS  Google Scholar 

  8. Yeo I-H, Johnson DC (2001) Electrochemical response of small organic molecules at nickel–copper alloy electrodes. J Electroanal Chem 495:110–119

    Article  CAS  Google Scholar 

  9. Barrera C, Zhukov I, Villagra E, Bedioui F, Pa’ez MA, Costamagna J, Zagal JH (2006) Trends in reactivity of unsubstituted and substituted cobalt-phthalocyanines for the electrocatalysis of glucose oxidation. J Electroanal Chem 589:212–218

    Article  CAS  Google Scholar 

  10. Ben Aoun S, Dursun Z, Koga T, Bang GS, Sotomura T, Taniguchi I (2004) Effect of metal ad-layers on Au(1 1 1) electrodes on electrocatalytic oxidation of glucose in an alkaline solution. J Electroanal Chem 567:175–183

    Article  CAS  Google Scholar 

  11. Ivanov I, Vidakovi, ć TR, Sundmacher K (2008) The influence of a self-assembled monolayer on the activity of rough gold for glucose oxidation. Electrochem Commun 10:1307–1310

    Article  CAS  Google Scholar 

  12. Baatz C, Decker N, Prübe U (2008) New innovative gold catalysts prepared by an improved incipient wetness method. J Catal 258:165–169

    Article  CAS  Google Scholar 

  13. Ishida T, Kuroda K, Kinoshita N, Minagawa W, Haruta M (2008) Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2. J Colloid and Interface Science 323:105–111

    Article  CAS  Google Scholar 

  14. Yan W, Feng X, Chen X, Hou W, Zhu J-J (2008) A super highly sensitive glucose biosensor based on Au nanoparticles–AgCl@polyaniline hybrid material. Biosens Bioelectron 23:925–931

    Article  CAS  Google Scholar 

  15. Li Y, Song Y-Y, Yang C, Xia X-H (2007) Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem Commun 9:981–988

    Article  CAS  Google Scholar 

  16. Tominaga M, Shimazoe T, Nagashima M, Taniguchi I (2005) Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochem Commun 7:189–193

    Article  CAS  Google Scholar 

  17. Tominaga M, Shimazoe T, Nagashima M, Kusuda H, Kubo A, Kuwahara Y, Taniguchi I (2006) Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution. J Electroanal Chem 590:37–46

    Article  CAS  Google Scholar 

  18. Shin C, Shin W, Hong H-G (2007) Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor. Electrochim Acta 53:720–728

    Article  CAS  Google Scholar 

  19. Nirmala Grace A, Pandian K (2007) Synthesis of gold and platinum nanoparticles using tetraaniline as reducing and phase transfer agent—A brief study and their role in the electrocatalytic oxidation of glucose. J Phys Chem Solids 68:2278–2285

    Article  CAS  Google Scholar 

  20. Nirmala Grace A, Pandian K (2007) Organically dispersible gold and platinum nanoparticles using aromatic amines as phase transfer and reducing agent and their applications in electro-oxidation of glucose. Colloids Surf A Physicochem Eng Asp 302:113–120

    Article  Google Scholar 

  21. Wu B-Y, Hou S-H, Yin F, Zhao Z-X, Wang Y-Y, Wang X-S, Chen Q (2007) Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens Bioelectron 22:2854–2860

    Article  CAS  Google Scholar 

  22. Bai Y, Yang H, Yang W, Li Y, Sun C (2007) Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sens Actuators B Chem 124:179–186

    Article  Google Scholar 

  23. Thibault S, Aubrient H, Arnoult C, Ruch D (2008) Gold nanoparticles and a glucose oxidase based biosensor: an attempt to follow-up aging by XP. Microchim Acta 163:211–217

    Article  CAS  Google Scholar 

  24. Zhao J, Yu JJ, Wang F, Hu SS (2006) Fabrication of gold nanoparticle-dihexadecyl hydrogen phosphate film on a glassy carbon electrode. Microchim Acta 156:277–282

    Article  CAS  Google Scholar 

  25. Aoun SB, Bang GS, Koga T, Nonaka Y, Sotomura T, Taniguchi I (2003) Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions. Electrochem Commun 5:317–320

    Article  CAS  Google Scholar 

  26. Aoun SB, Dursun Z, Koga T, Bang GS, Sotomura T, Taniguchi I (2004) Effect of metal ad-layers on Au(1 1 1) electrodes on electrocatalytic oxidation of glucose in an alkaline solution. J Electroanal Chem 567:175–183

    Article  Google Scholar 

  27. Jin C, Taniguchi I (2007) Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells. Materials Letters 61:2365–2367

    Article  CAS  Google Scholar 

  28. Sulak MT, Gokdogan O, Gulce A, Gulce H (2006) Amperometric glucose biosensor based on gold-deposited polyvinylferrocene film on Pt electrode. Biosens Bioelectron 21:1719–1726

    Article  Google Scholar 

  29. Cho S, Shin H, Kang C (2006) Catalytic glucose oxidation on a polycrystalline gold electrode with an amalgamation treatment (TM 05092). Electrochimica Acta 51:3781–3786

    Article  CAS  Google Scholar 

  30. Yi QF, Li L, Yu WQ, Zhou ZH, Xu GR (2008) A novel titanium-supported Ag/Ti electrode for the electro-oxidation of hydrazine. J Mol Catal A: Chem 295:34–38

    Article  CAS  Google Scholar 

  31. Yi QF, Huang W, Yu WQ, Li L, Liu XP (2008) Hydrothermal Synthesis of Titanium-Supported Nickel Nanoflakes for Electrochemical Oxidation of Glucose. Electroanalysis 20:2016–2022

    Article  CAS  Google Scholar 

  32. Yi QF, Zhang JJ, Chen AC, Liu XP, Xu GR, Zhou ZH (2008) Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol. J Appl Electrochem 38:695–701

    Article  CAS  Google Scholar 

  33. Trasatti S, Petrii OA (1991) Real surf ace area measurements in electrochemistry. Pure & Appl Chem 63:711–734

    Article  CAS  Google Scholar 

  34. Tominaga M, Taema Y, Taniguchi I (2008) Electrocatalytic glucose oxidation at bimetallic gold–copper nanoparticle-modified carbon electrodes in alkaline solution. J Electroanal Chem 624:1–8

    Article  CAS  Google Scholar 

  35. Tominaga M, Shimazoe T, Nagashima M, Taniguchi I (2008) Composition–activity relationships of carbon electrode-supported bimetallic gold–silver nanoparticles in electrocatalytic oxidation of glucose. J Electroanal Chem 615:51–61

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.20876038) and A Project Supported by Scientific Research Fund of Hunan Provincial Education Department, China (No.07A019). Qingfeng Yi thanks the Project Sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, China ([2007]1108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Q., Yu, W. Electrocatalytic activity of a novel titanium-supported nanoporous gold catalyst for glucose oxidation. Microchim Acta 165, 381–386 (2009). https://doi.org/10.1007/s00604-009-0148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0148-0

Keywords

Navigation