Skip to main content
Log in

A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with Nafion and activated nanocarbon

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A biosensor for hydrogen peroxide (HP) was developed by immobilizing hemoglobin on a glassy carbon electrode modified with activated carbon nanoparticles/Nafion. The characteristics of the sensor were studied by UV–vis spectroscopy and electrochemical methods. The immobilized Hb retained its native secondary structure, undergoes direct electron transfer (with a heterogeneous rate constant of 3.37 ± 0.5 s−1), and displays excellent bioelectrocatalytic activity to the reduction of HP. Under the optimal conditions, its amperometric response varies linearly with the concentration of HP in the range from 0.9 μM to 17 μM. The detection limit is 0.4 μM (at S/N = 3). Due to the commercial availability and low cost of activated carbon nanoparticles, it can be considered as a useful supporting material for construction of other third-generation biosensors.

A biosensor for hydrogen peroxide (HP) was developed by immobilizing hemoglobin on a glassy carbon electrode modified with activated carbon nanoparticles/Nafion. It can be considered as a useful supporting material for construction of other third-generation biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  Google Scholar 

  2. Weber PA, Thomas JE, Skinner WM, Smart RSC (2004) Improved acid neutralisation capacity assessment of iron carbonates by titration and theoretical calculation. Appl Geochem 19:687–694

    Article  CAS  Google Scholar 

  3. Gorala VN, Nelena MI, Ryabovab AD (1995) Ferrocene and ferricenium ion as versatile photometric titrants of H2O2 and D-glucose in the presence of peroxidase and glucose oxidase. A ferrocene-peroxidase stairway 1. Anal Lett 28:2139–2148

    Google Scholar 

  4. Sakaia S, Satowa T, Imakawa K, Nagaoka K (2008) Generation of hydrogen peroxide by a low molecular weight compound in whey of Holstein dairy cows. J Dairy Res 75:257–261

    Google Scholar 

  5. Hong J, Dai Z (2009) Amperometric biosensor for hydrogen peroxide and nitrite based on hemoglobin immobilized on one-dimensional gold nanoparticle. Sensor Actuat B-Chem 140:222–226

    Article  Google Scholar 

  6. Liu S, Dai ZH, Chen HY, Ju HX (2004) Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens Bioelectron 19:963–969

    Article  CAS  Google Scholar 

  7. Chen Y, Jin B, Guo LR, Yang XJ, Chen W, Gu G, Zheng LM, Xia XH (2008) Hemoglobin on phosphonic acid terminated self-assembled monolayers at a gold electrode: immobilization, direct electrochemistry, and electrocatalysis. Chem Eur J 14:10727–10734

    Article  CAS  Google Scholar 

  8. Varma S, Mitra CK (2002) Bioelectrochemical studies on catalase modified glassy carbon paste electrodes. Electrochem Commun 4:151–157

    Article  CAS  Google Scholar 

  9. Wang Q, Yun YB, Zheng JB (2009) Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid. Microchim Acta 167:1530–157

    Google Scholar 

  10. Ye J, Baldwin RP (1988) Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue. J Electroanal Chem 60:2263–2268

    CAS  Google Scholar 

  11. Yu CM, Guo JW, Gu HY (2009) Direct electrochemical behavior of hemoglobin at surface of Au@Fe3O4 magnetic nanoparticles. Microchim Acta 166:215–220

    Article  CAS  Google Scholar 

  12. Ltzbeyer T, Schuhmann W, Schmidt HL (1996) Electron transfer principles in amperometric biosensors: direct electron transfer between enzymes and electrode surface. Sensor Actuat B-Chem 33:50–54

    Article  Google Scholar 

  13. Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotakis NA (2003) Novel carbon materials in biosensor systems. Biosens Bioelectron 18:211–215

    Article  CAS  Google Scholar 

  14. Vamvakaki V, Tsagaraki K, Chaniotakis N (2006) Carbon nanofiber-based glucose biosensor. J Anal Chem 78:5538–5542

    Article  CAS  Google Scholar 

  15. Fan C, Wang H, Sun S, Zhu D, Wagner G, Li G (2001) Electron-transfer reactivity and enzymatic activity of hemoglobin in a SP Sephadex membrane. J Anal Chem 73:2850–2854

    Article  CAS  Google Scholar 

  16. Xu J, Liu CH, Teng YL (2010) Direct electrochemistry and electrocatalysis of hydrogen peroxide using hemoglobin immobilized in hollow zirconium dioxide spheres and sodium alginate films. Microchim Acta 169:181–186

    Article  CAS  Google Scholar 

  17. Yu P, Lin Y, Xiang L, Su L, Zhang J, Mao L (2005) Molecular films of water-miscible ionic liquids formed on glassy carbon electrodes: characterization and electrochemical applications. Langmuir 21:9000–9006

    Article  CAS  Google Scholar 

  18. Zeng X, Wei W, Li X, Zeng J, Wu L (2007) Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Bioelectrochemistry 71:135–141

    Article  CAS  Google Scholar 

  19. ElKaoutit M, Naranjo-Rodriguez I, Temsamani KR, Domínguez M, Hidalgo-Hidalgo JL (2008) Investigation of biosensor signal bioamplification: comparison of direct electrochemistry phenomena of individual Laccase, and dual Laccase-Tyrosinase copper enzymes, at a Sonogel-Carbon electrode. Talanta 75:1348–1355

    Article  CAS  Google Scholar 

  20. Li HH, Liu SQ, Dai ZH, Bao JC, Yang XD (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9:8547–8561

    Article  CAS  Google Scholar 

  21. Ma W, Song W, Tian DB (2009) ZnO-MWCNTs/Nafion inorganic–organic composite film: preparation and application in bioelectrochemistry of hemoglobin. Chinese Chem Lett 20:358–361

    Article  Google Scholar 

  22. Chen Y, Yang XJ, Guo LR, Li J, Xia XH, Zheng LM (2009) Direct electrochemistry and electrocatalysis of hemoglobin at three-dimensional gold film electrode modified with self-assembled monolayers of 3-mercaptopropylphosphonic acid. Anal Chim Acta 644:83–89

    Article  CAS  Google Scholar 

  23. Sarma AK, Vatsyayan P, Goswami P, Minteer SD (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322

    Article  CAS  Google Scholar 

  24. Cai CX, Chen J (2004) Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal Biochem 325:285–292

    Article  CAS  Google Scholar 

  25. Ma GX, Lu TH, Xia YY (2007) Direct electrochemistry and bioelectrocatalysis of hemoglobin immobilized on carbon black. Bioelectrochemistry 71:180–185

    Article  CAS  Google Scholar 

  26. Xu JM, Li W, Yin QF, Zhong H, Zhu YL, Jin LT (2007) Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode. J Colloid Interface Sci 315:170–176

    Article  CAS  Google Scholar 

  27. George P, Hanania G (1953) A spectrophotometric study of ionizations in methaemoglobin. Biochem J 55:236–243

    CAS  Google Scholar 

  28. Zhao HY, Xu XX, Zhang JX, Zheng W, Zheng YF (2010) Carbon nanotube–hydroxyapatite–hemoglobin nanocomposites with high bioelectrocatalytic activity. Bioelectrochemistry 78:124–129

    Article  CAS  Google Scholar 

  29. Lavrich DJ, Wetterer SM, Bernasek SL, Scoles G (1998) Physisorption and chemisorption of alkanethiols and alkyl sulfides on Au (111). J Phys Chem B 102:3456–3465

    Article  CAS  Google Scholar 

  30. Lu Q, Hu C, Cui R, Hu S (2007) Direct electron transfer of hemoglobin founded on electron tunneling of CTAB monolayer. J Phys Chem B 111:9808–9813

    Article  CAS  Google Scholar 

  31. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  32. Sun W, Zhai ZQ, Wang DD, Liu SF, Jiao K (2009) Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode. Bioelectrochemistry 74:295–300

    Article  CAS  Google Scholar 

  33. Zhao HY, Zheng W, Meng ZX, Zhou HM, Xu XX, Li Z, Zheng YF (2009) Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosens Bioelectron 24:2352–2357

    Article  CAS  Google Scholar 

  34. Zhu JT, Shi CG, Xu JJ, Chen HY (2007) Direct electrochemistry and electrocatalysis of hemoglobin on undoped nanocrystalline diamond modified glassy carbon electrode. Bioelectrochemistry 71:243–248

    Article  CAS  Google Scholar 

  35. Bond AM (1980) Modern polarographic methods in analytical chemistry. Marcel Dekker, New York, p 27

    Google Scholar 

  36. Taniguchi V, Sailasuta-Scott N, Anson FC, Gray HB (1980) Thermodynamics of metalloprotein electron transfer reactions. Pure Appl Chem 52:2275–2281

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials P. R. China (JSKC08047), Fund of Huaian Technology Bureau (HAG09054-7, HAC0804) and Fund of Huanyin Teachers College (08HSJSK003) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Xu, J., Zhao, P. et al. A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with Nafion and activated nanocarbon. Microchim Acta 172, 117–123 (2011). https://doi.org/10.1007/s00604-010-0470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0470-6

Keywords

Navigation