Skip to main content
Log in

Novel approach for electrochemical preparation of sulfur nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical method is presented for the preparation of sulfur nanoparticles (S-NPs) from thiosulfate ion. The particle size of the S-NPs can be adjusted between 35 and 65 nm by varying parameters such as the initial concentration of thiosulfate. The solvent/non-solvent precipitation method was also applied to the preparation of S-NPs for comparison. In this case, the use of hot alcohol and cold water as solvent/non-solvent system along with 100 ml·min−1 flow rate for co-mixing of non-solvent resulted in the formation of S-NPs in a typical size of 250 nm that are fairly homogeneous in shape and have a narrow particle size distribution. The results revealed that, in comparison to the precipitation process, the electro-synthetic method offers simplicity, higher efficiency, improved size control, and less environmental contamination.

Sulfur nanoparticles were prepared via electrochemical synthesis. Particle size of product was tuned by adjusting initial concentration of sodium thiosulfate in electrolyte solution. Meanwhile, the solvent/non-solvent procedure was also used to micronization of sulfur. Under optimum conditions, particles in submicron sized, homogeneous in shape with a narrow particle size distribution were formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3:667

    Article  CAS  Google Scholar 

  2. Khanna PK, Subbarao VVVS, Wagh M, Jadhav P, Patil KR (2005) Synthesis of fine PbE (E = S, Se) powder from direct in situ reduction of sulphur or selenium. Mater Chem Phys 93:91

    Article  CAS  Google Scholar 

  3. Niu J, Sha J, Yang D (2004) Sulfide-assisted growth of silicon nano-wires by thermal evaporation of sulfur powders. Phys E 24:278

    Article  CAS  Google Scholar 

  4. Liu H, Li Y, Lou H, Fang H, Li H, Xiao S, Shi Z, Xiao S, Zhu D (2003) Simple synthesis of CdS nanorods by sulfur powders. Synth Met 135–136:841

    Article  Google Scholar 

  5. Behboudnia M, Khanbabaee B (2007) Investigation of nanocrystalline copper sulfide Cu7S4 fabricated by ultrasonic radiation technique. J Cryst Growth 304:158

    Article  CAS  Google Scholar 

  6. Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20:179

    Article  CAS  Google Scholar 

  7. Kaneko K, Inoke K, Freitag B, Hungria AB, Midgley PA, Hansen TW, Zhang J, Ohara S, Adschiri T (2007) Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Lett 7:421

    Article  CAS  Google Scholar 

  8. Pourmortazavi SM, Hajimirsadeghi SS (2005) Application of supercritical carbon dioxide in energetic materials processes: a review. Ind Eng Chem Res 44:6523

    Article  CAS  Google Scholar 

  9. Yang B, Wu Y, Zong B, Shen Z (2002) Electrochemical synthesis and characterization of magnetic nanoparticles on carbon nanowall templates. Nano Lett 2:751

    Article  CAS  Google Scholar 

  10. Fotouhi L, Rezaei M (2009) Electrochemical synthesis of copper sulfide nanoparticles. Microchim Acta 167:247

    Article  CAS  Google Scholar 

  11. Gou L, Murphy CG (2003) Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3:231

    Article  CAS  Google Scholar 

  12. Khanna PK, Das BK (2004) Novel synthesis of silver selenide nano-powder from silver nitrate to organo-selenium compound. Mater Lett 58:1030

    Article  CAS  Google Scholar 

  13. Schimmel MI, de Tacconi NR, Rajeshwar K (1998) Anodic electrosynthesis of Cu2S and CuInS2 films. J Electroanal Chem 453:187

    Article  CAS  Google Scholar 

  14. Gui Y, Xie C, Zhang Q, Hu M, Yu J, Weng Z (2006) Synthesis and characterization of ZnO nanostructures by two-step oxidation of Zn nano- and microparticles. J Cryst Growth 289:663

    Article  CAS  Google Scholar 

  15. Brevet D, Mugnier Y, Samreth S (2003) Efficient electrochemical synthesis of thioxylal. Electrochim Acta 48:3419

    Article  CAS  Google Scholar 

  16. Zhong J, Shen Z, Yang Y, Chen J (2005) Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment. Int J Pharm 301:286

    Article  CAS  Google Scholar 

  17. Arkhireeva A, Hay JN, Lane JM, Manzano M, Masters H, Oware W, Shaw SJ (2004) Synthesis of organic-inorganic hybrid particles by sol-gel chemistry. J Sol-Gel Sci Technol 31:31

    Article  CAS  Google Scholar 

  18. Bund RK, Pandit AB (2007) Sonocrystallization: effect on lactose recovery and crystal habit. Ultrason Sonochem 14:143

    Article  CAS  Google Scholar 

  19. Reverchon E (1999) Supercritical antisolvent precipitation of micro- and nano-particles. J Supercrit Fluids 15:1

    Article  CAS  Google Scholar 

  20. Guo Z, Zhang M, Li H, Wang J, Kougoulos E (2005) Effect of ultrasound on anti-solvent crystallization process. J Cryst Growth 273:555

    Article  CAS  Google Scholar 

  21. Deshpande AS, Khomane RB, Vaidya BK, Joshi RM, Harle AS, Kulkarni BD (2008) Sulfur nanoparticles synthesis and characterization from H2S gas, using novel biodegradable iron chelates in W/O microemulsion. Nanoscale Res Lett 3:221

    Article  CAS  Google Scholar 

  22. Hosseini SG, Pourmortazavi SM, Fathollahi M (2004) Orthogonal array design for the optimization of silver recovery from waste photographic paper. Sep Sci Technol 39:1953

    Article  CAS  Google Scholar 

  23. Molleman E, Dreisinger D (2002) The treatment of copper-gold ores by ammonium thiosulfate leaching. Hydrometallurgy 66:1

    Article  CAS  Google Scholar 

  24. Shvab NA, Litovchenko VD, Rudkovskaya LM (2007) Mechanism of reduction of thiosulfate ions on the cathode. Russ J Appl Chem 80:1852

    Article  CAS  Google Scholar 

  25. Senanayake G (2004) Analysis of reaction kinetics, speciation and mechanism of gold leaching and thiosulfate oxidation by ammoniacal copper(II) solutions. Hydrometallurgy 75:55

    CAS  Google Scholar 

  26. Waterston K, Bejan D, Bunce NJ (2007) Electrochemical oxidation of sulfide ion at a boron-doped diamond anode. J Appl Electrochem 37:367

    Article  CAS  Google Scholar 

  27. Ateya BG, Al Kharafi FM, El-Shamy AM, Saad AY, Abdalla RM (2009) Electrochemical desulfurization of geothermal fluids under high temperature and pressure. J Appl Electrochem 39:383

    Article  CAS  Google Scholar 

  28. Weast RC (1984) Thermodynamic data, handbook of chemistry and physics, 64th edn. CRC Press, D52

  29. Zhang JY, Shen ZG, Zhong J, Hu TT, Chen JF, Ma ZQ, Yun J (2006) Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants. Int J Pharm 323:153

    Article  CAS  Google Scholar 

  30. Bilati U, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67

    Article  CAS  Google Scholar 

  31. Galindo-rodriguez S, Allemann SE, Fessi H, Doelker E (2004) Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res 21:1428

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The support of this work by Iran National Science Foundation (INSF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Shamsipur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamsipur, M., Pourmortazavi, S.M., Roushani, M. et al. Novel approach for electrochemical preparation of sulfur nanoparticles. Microchim Acta 173, 445–451 (2011). https://doi.org/10.1007/s00604-011-0581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0581-8

Keywords

Navigation