Skip to main content
Log in

Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a non-enzymatic amperometric sensor for hydrogen peroxide (H2O2). It was fabricated by electrodeposition of multi-wall carbon nanotubes and polyaniline along with platinum nanoparticles on the surface of a glassy carbon electrode. The modification was probed by scanning electron microscopy and cyclic voltammetry. The resulting sensor exhibits a high sensitivity (748.4 μA·mM−1·cm−2), a wide linear range (7.0 μM–2.5 mM), a low detection limit (2.0 μM) (S/N = 3), a short response time (>5 s), and long-term stability, and is not interfered by common species. It was successfully applied to determine H2O2 in disinfectants.

SEM images of the obtained Pt/MWCNTs-PANI composite films with large surface-to-volume ratio and biocompatibility

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Delvaux M, Walcarius A, Demoustier-Champagne S (2004) Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles. Anal Chim Acta 525:221–230

    Article  CAS  Google Scholar 

  2. Yang PH, Wei WZ, Tao CY et al (2008) Nano-silver/multi-walled carbon nanotube composite films for hydrogen peroxide electroanalysis. Microchim Acta 162:51–56

    Article  CAS  Google Scholar 

  3. Kafi AKM, Wu GS, Chen AC (2008) A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 24:566–571

    Article  CAS  Google Scholar 

  4. Ding Y, Jia WZ, Zhang H et al (2010) Carbonized hemoglobin nanofibers for enhanced H2O2 detection. Electroanalysis 22:1911–1917

    Article  CAS  Google Scholar 

  5. Bian XJ, Lu XF, Jin E et al (2010) Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide. Talanta 81:813–818

    Article  CAS  Google Scholar 

  6. Lupu A, Lisboa P, Valsesia A et al (2009) Hydrogen peroxide detection nanosensor array for biosensor development. Sensor Actuat B Chem 137:56–61

    Article  Google Scholar 

  7. Sljukic B, Banks CE, Compton RG (2006) Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Letters 6:1556–1558

    Article  CAS  Google Scholar 

  8. Che X, Yuan R, Chai YQ et al (2009) Hydrogen peroxide sensor based on horseradish peroxidase immobilized on an electrode modified with DNA-L-cysteine-gold-platinum nanoparticles in polypyrrole film. Microchim Acta 167:159–165

    Article  CAS  Google Scholar 

  9. Li YH, Liu XY, Zeng XD et al (2009) Nonenzymatic hydrogen peroxide sensor based on a prussian blue-modified carbon ionic liquid electrode. Microchim Acta 165:393–398

    Article  CAS  Google Scholar 

  10. MacDiarmid AG, Chiang JC, Richter AF et al (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18:285–290

    Article  CAS  Google Scholar 

  11. MacDiarmid AG, Epstein AJ, Bredas JL et al (1990) Conjugated polymeric materials: Opportunities in electronics, optoelectronics and molecular electronics. Kluwer, Netherlands, pp 53–58

    Google Scholar 

  12. Sazou D, Georgolios C (1997) Formation of conducting polyaniline coatings on iron surfaces by electropolymerization of aniline in aqueous solutions. J Electrochem Soc 429:81–93

    CAS  Google Scholar 

  13. Dhand C, Das M, Datta M et al (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821

    Article  CAS  Google Scholar 

  14. Dresselhaus MA, Ebdo M (2001) Relation of carbon nanotubes to other carbon materials. Top Appl Phys 80:11–28

    Article  CAS  Google Scholar 

  15. Sun Y, Wilson SR, Schuster DI (2001) High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. J Am Chem Soc 123:5348–5349

    Article  CAS  Google Scholar 

  16. Cochet M, Maser WK, Benito AM et al (2001) Synthesis of a new polyanilin/nanotube composite: “in-situ” polymerization and charge transfer. Chem Commun 1450–1451.

  17. Zengin H, Zhou W, Jin J (2002) Carbon nanotube doped polyaniline. Adv Mater 14:1480–1483

    Article  CAS  Google Scholar 

  18. Stilwell DE, Park SM (1988) Electrochemistry of conductive polymers II: electrochemical studies on growth properties of polyaniline. J Electrochem Soc 135:2254–2262

    Article  CAS  Google Scholar 

  19. Cui SY, Park SM (1999) Electrochemistry of conductive polymers XXIII: polyaniline growth studied by electrochemical quartz crystal microbalance measurements. Synth Met 105:91–98

    Article  CAS  Google Scholar 

  20. Darowicki K, Kawula J (2004) Impedance characterization of the process of polyaniline first redox transformation after aniline electropolymerization. Electrochim Acta 49:4829–4839

    Article  CAS  Google Scholar 

  21. Trung T, Trung TH, Chang-Sik H (2005) Preparation and cyclic voltammetry studies on nickel-nanoclusters containing polyaniline composites having layer-by-layer structures. Electrochim Acta 51:984–990

    Article  CAS  Google Scholar 

  22. Schäferling M, Grögel DBM, Schreml S (2011) Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta 174:1–18

    Article  Google Scholar 

  23. Lo LC, Chu CY (2003) Development of highly selective and sensitive probes for hydrogen peroxide. Chem Commun 2728–2729.

  24. Bel’tyukova SV, Vityukova EO, Egorova AVJ (2007) Spectral luminescence properties of Eu(III) complexes with tetracycline antibiotics and hydrogen peroxide. J Appl Spectrosc 74:344–349

    Article  Google Scholar 

  25. Kumar SA, Wang SF, Chang YT (2010) Poly(BCB)/Au-nanoparticles hybrid film modified electrode: Preparation, characterization and its application as a non-enzymatic sensor. Thin Solid Films 518:5832–5838

    Article  CAS  Google Scholar 

  26. Liu S, Li LM, Hao QY et al (2010) A novel non-enzymatic hydrogen peroxide sensor based on Mn-nitrilotriacetate acid (Mn-NTA) nanowires. Talanta 81:727–731

    Article  CAS  Google Scholar 

  27. Lin KC, Tsai TH, Chen SM (2010) Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film. Biosens Bioelectron 26:608–614

    Article  CAS  Google Scholar 

  28. Wang Q, Yuan YB, Zheng JB (2009) Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid. Microchim Acta 167:153–157

    Article  CAS  Google Scholar 

  29. O’Halloran MP, Pravda M, Guilbault GG (2001) Prussian blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta 55:605–611

    Article  Google Scholar 

  30. Salimi A, Mahdioun M, Noorbakhsh A et al (2011) A novel non-enzymatic hydrogen peroxide sensor based on single walled carbon nanotubes–manganese complex modified glassy carbon electrode. Electrochim Acta 56:3387–3394

    Article  CAS  Google Scholar 

  31. Song MJ, Hwang SW, Whang D (2010) Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta 80:1648–1652

    Article  CAS  Google Scholar 

  32. Yang T, Hu YW, Li WJ et al (2011) Single stranded DNA-guided electropolymerization of polythionine nanostrip to the sensing of H2O2. Colloid Surface B 83:179–182

    Article  CAS  Google Scholar 

  33. Dey RS, Rai CR (2010) Development of an amperometric cholesterol biosensor based on grapheme-Pt nanoparticlemhybrid material. J Phys Chem C 114:21427–21433

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21075100), the Ministry of Education of China (project 708073), the 211 Project of Southwest University (the Third Term), the Natural Science Foundation of Chongqing City (CSTC-2009BA1003), China and High Technology Project Foundation of Southwest University (XSGX 02), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1S

Influences of electropolymerization cycles of MWCNTs-PANI nanocomposites on the respond of the modified electrode (DOC 63 kb)

Fig. 2S

Influence of electrodeposition time of Pt nanoparticles on the respond of the modified electrode (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, H., Yuan, R., Chai, Y. et al. Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles. Microchim Acta 176, 389–395 (2012). https://doi.org/10.1007/s00604-011-0731-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0731-z

Keywords

Navigation