Skip to main content
Log in

Direct electrochemistry of cytochrome P450 in a biocompatible film composed of an epoxy polymer and acetylene black

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a composite matrix composed of epoxy copolymers P (GMA-co-MPC) and acetylene black that can be used to entrap cytochrome P450. The composite provides a biocompatible microenviroment and can substantially accelerate the electron transfer between the cytochrome P450 and the electrode. The electrochemical response is characterized by a pair of well-defined redox peaks for the heme Fe(II/III) redox couples were observed at −483 mV (vs. SCE). The immobilized cytochrome P450 exhibits excellent electrocatalytical activity to diethylstilbestrol (DES). The amperometric response varied linearly with the concentration of DES in the 0.2 to 2.8 μM concentration range. The biosensor displays a detection limit 5.9 × 10-8 mol L-1 and thus represents a promising candidate for studying the electrochemistry of cytochrome P450s and its sensing applications.

Composite matrix of epoxy copolymers P (GMA-co-MPC)) and acetylene black (AB) was firstly used to entrap cytochrome P450 (CYP3A4). The direct electrochemistry behaviors of CYP3A4 were investigated and CYP3A4 immobilized in P(GMA-co-MPC)/AB film exhibited excellent electrocatalytical activity to diethylstilbestrol (DES). CVs of CYP3A4/P(GMA-co-MPC)/AB/GCE. (a) N2-saturated+2μM DES, (b) air-saturated, (c) air-saturated +2 μM DES

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Todd DP, Minor JC (1991) Cytochrome P-450: multiplicity of isoforms, substrates, and catalytical and regulatory mechanisms. J Biol Chem 266:13469–13472

    Google Scholar 

  2. Montellano PRO (1998) Heme oxygenase mechanism: evidence for an electrophilic, ferric peroxide species. Acc Chem Res 31:543–549

    Article  Google Scholar 

  3. Archakov AI, Bachmanova GI (Eds.), Cytochrome P450 and Active Oxygen, Taylor and Francis, London, 1990.

  4. Estabrook RW, Faulkner KM, Shet MS, Fisher CW (1996) Application of electrochemistry for P450-catalyzed reactions. Method Enzymol 272:44–51

    Article  CAS  Google Scholar 

  5. Joseph S, Rusling JF, Lvov YM, Friedberg T, Fuhr U (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem Pharm 65:1817–1826

    CAS  Google Scholar 

  6. Shumyantseva VV, Ivanov YD, Bistolas N, Scheller FW, Archakov AI, Wollenberger U (2004) Direct electron transfer of cytochrome P450 2B4 at electrodes modified with nonionic detergent and colloidal clay nanoparticles. Anal Chem 76:6046–6052

    Article  CAS  Google Scholar 

  7. Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Cytochrome P450 biosensors—a review. Biosens Bioelectron 20:2408–2423

    Article  CAS  Google Scholar 

  8. Das A, Grinkova YV, Sligar SG (2007) Redox potential control by drug binding to cytochrome P450 3A4. J Am Chem Soc 129:13778–13779

    Article  CAS  Google Scholar 

  9. Liu SQ, Peng L, Yang XD, Wu YF, He L (2008) Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its applications for drug sensing. Anal Biochem 375:209–216

    Article  CAS  Google Scholar 

  10. Dodhia VR, Sassone C, Fantuzzi A, Nardo GD, Sadeghi SJ, Gilardi G (2008) Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering. Electrochem Commun 10:1744–1747

    Article  CAS  Google Scholar 

  11. Sadeghi SJ, Fantuzzi A, Gilardi G (2011) Breakthrough in P450 bioelectrochemistry and future perspectives. BBA-Proteins Proteom 1814:237–248

    Article  CAS  Google Scholar 

  12. Zhang L, Liu XQ, Wang CT, Liu XQ, Cheng G, Wu YH (2010) Expression, purification and direct eletrochemistry of cytochrome P450 6A1 from the house fly, Musca domestica. Protein Expres Purif 71:74–78

    Article  CAS  Google Scholar 

  13. Lewis DFV (Ed.) Guide to cytochrome P450. Structure and function. Taylor and Francis Eds., London and New York, 2001.

  14. Murphy EF, Lu JR (2000) Characterization of protein adsorption at the phosphorylcholine incorporated polymer-water interface. Macromolecules 33:4545–4554

    Article  CAS  Google Scholar 

  15. Ma YH, Tang YQ, Billingham NC, Armes SP, Lewis AL (2003) Synthesis of biocompatible, stimuli-responsive, physical gels based on ABA triblock copolymers. Biomacromolecules 4:864–868

    Article  CAS  Google Scholar 

  16. Kudo H, Sawada T, Kazawa E, Yoshida H, Iwasakic Y, Mitsubayashi K (2006) A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosens Bioelectron 22:558–562

    Article  CAS  Google Scholar 

  17. Xu FJ, Cai QJ, Li YL, Kang ET, Neoh KG (2005) Covalent immobilization of glucose oxidase on well-defined Poly(glycidyl methacrylate)−Si(111) hybrids from surface-initiated atom-transfer radical polymerization. Biomacromolecules 6:1012–1020

    Article  CAS  Google Scholar 

  18. Jia SS, Fei JJ, Deng JJ, Cai YL (2009) Direct electrochemistry and electrocatalysis of hemoglobin immobilized in an amphiphilic diblock copolymer film. Sens Actuators B 138:244–250

    Article  Google Scholar 

  19. Bureau of National Affairs EPA (1998) Draft list of candidate chemicals for high throughput screening project. Chem Regul Rep 22:693

    Google Scholar 

  20. Blatt J, Van Le L, Weiner T, Sailer S (2003) Fe(III)–oxalate complexes induced photooxidation of diethylstilbestrol in water. J Pediatr Hematol Oncol 25:635

    Article  Google Scholar 

  21. Zhou D, Wu F, Deng N (2004) Fe(III)–oxalate complexes induced photooxidation of diethylstilbestrol in water. Chemosphere 57:283

    Article  CAS  Google Scholar 

  22. Jeannot R, Sabik H, Sauvard E, Dagnac T (2002) Determination of endocrine-disrupting compounds in environmental samples using gas and liquid chromatography with mass spectrometry. J Chromatogr A 974:143–159

    Article  CAS  Google Scholar 

  23. Xu J, Wu LS, Chen WP, Chang AC (2008) Simultaneous determination of pharmaceuticals, endocrine disrupting compounds and hormone in soils by gas chromatography–mass spectrometry. J Chromatogr A 1202:189–195

    Article  CAS  Google Scholar 

  24. Gascón J, Oubiňa A, Barceló D (1997) Detection of endocrine-disrupting pesticides by enzyme-linked immunosorbent assay (ELISA): application to atrazine. Trends Anal Chem 16:554–562

    Article  Google Scholar 

  25. Li H, Zhang ZJ, Guo ZH, Li ZX (2007) Electrochemiluminescence determination of diethylstilbestrol at glassy carbon electrode modified with nano-cluster-structured manganese oxide. Chin J Anal Chem 35:143–145

    CAS  Google Scholar 

  26. Fei JJ, Wen XQ, Yi LH, Ge F, Zhang Y, Huang MH, Chen XM (2008) Electrochemical determination diethylstilbestrol by a single-walled carbon nanotubes/platinum nanoparticles composite film electrode. J Appl Electrochem 38:1527–1533

    Article  CAS  Google Scholar 

  27. Zhang SH, Wu KB, Hu SS (2002) Voltammetric determination of diethylstilbestrol at carbon paste electrode using cetylpyridine bromide as medium. Talanta 58:747–754

    Article  CAS  Google Scholar 

  28. Biryol I, Salcı B, Erdik E (2003) Voltammetric investigation of diethylstilbestrol. J Pharm Biomed Anal 32:1227–1234

    Article  CAS  Google Scholar 

  29. Li G, Wan CD, Ji ZM, Wu KB (2007) An electrochemical sensor for Cd2+ based on the inducing adsorption ability of I. Sens Actuators B 124:1–5

    Article  Google Scholar 

  30. Xu N, Ding YL, Ai HH, Fei JJ (2010) Acetylene black-ionic liquids composite electrode: a novel platform for electrochemical sensing. Microchim Acta 170:165–170

    Article  CAS  Google Scholar 

  31. Chae KH, Jang YM, Kim YH, Sohn OJ, Rhee JI (2007) Anti-fouling epoxy coatings for optical biosensor application based on phosphorylcholine. Sens Actuators B 124:153–160

    Article  Google Scholar 

  32. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  33. Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1998–1205

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20975088), the Project from the Hunan Provincial Natural Science Foundation of China (09JJ6018), the Key Project of Chinese Ministry of Education (210152), the Foundation of the Hunan Provincial Education Department (09A092, 10C1254).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonglan Ding or Junjie Fei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, C., Ding, Y., Li, M. et al. Direct electrochemistry of cytochrome P450 in a biocompatible film composed of an epoxy polymer and acetylene black. Microchim Acta 176, 397–404 (2012). https://doi.org/10.1007/s00604-011-0734-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0734-9

Keywords

Navigation