Skip to main content
Log in

A solid state Cr(VI) ion-selective electrode based on polypyrrole

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a graphite electrode onto which polypyrrole was electrodeposited and then doped with chromate ion. This electrode can serve as a Cr(VI)-selective solid-state electrode. Electropolymerization of pyrrole was performed potentiostatically at 0.80 V (vs. SCE) using battery graphite as the working electrode in a solution containing 0.10 M of pyrrole and 20 mM of chromate. A platinum wire was used as an auxiliary electrode. The new electrode displays high selectivity, a very wide dynamic range, a sufficiently fast response time and a good shelf lifetime. It shows a linear Nernstian response over 1.0 × 10−6 to 1.0 × 10−1 M concentration range (with a slope of 26.55 ± 0.20 mV per log of concentration). The detection limit is 0.5 μM, and the pH optimum is 7.0.

A highly selective solid state Cr(VI) ion-selective electrode based on polypyrrole conducting polymer was prepared. The introduced Cr(VI) micro sensor electrode exhibited linear response over a wide working concentration range with a high regression coefficient and a near Nernstian slope. The SEM image of PPy/CrO4 thin film shows unevenly distributed nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Katz F, Salem H (1994) The biological and environmental chemistry of chromium. VCH Publisher, New York

    Google Scholar 

  2. Ansari R, Khoshbakht Fahim N (2007) Application of polypyrrole coated on wood sawdust for removal of Cr(VI) ion from aqueous solutions. React Funct Polym 67:367–374

    Google Scholar 

  3. Guertin J, Jacobs JA, Avakian CP (2005) Cr(VI) handbook, Written by Independent Environmental Technical Evaluation Group (IETEG), CRC press

  4. Zaitoun MA (2005) Spectrophotometric determination of Cr(VI) using cyclam as a reagent. Int J Environ Anal Chem 85(5):399–407

    Article  CAS  Google Scholar 

  5. Alves-Segundo R, Ibañez-Garcia N, Baeza M, Puyol M, Alonso-Chamarro J (2011) Towards a monolithically integrated microsystem based on the green tape ceramics technology for spectrophotometric measurements. determination of chromium(VI) in water. Microchim Acta 172:225–232

    Article  CAS  Google Scholar 

  6. Sun Z, Liang P (2008) Determination of Cr(III) and total chromium in water samples by cloud point extraction and flame atomic absorption spectrometry. Microchim Acta 162:121

    Article  CAS  Google Scholar 

  7. Séby F, Charles S, Gagean M, Garraud H, Donard OFX (2003) Chromium speciation by hyphenation of high-performance liquid chromatography to inductively coupled plasma-mass spectrometry-study of the influence of interfering ions. J Anal At Spectrom 18:1386

    Article  Google Scholar 

  8. Motomizu S, Jitmanee K, Oshima M (2003) On-line collection/concentration of trace metals for spectroscopic detection via use of small-sized thin solid phase (STSP) column resin reactors: application to speciation of Cr(III) and Cr(VI). Anal Chim Acta 499:149

    Article  CAS  Google Scholar 

  9. Arancibia V, Valderrama M, Silva K, Tapia T (2003) Determination of chromium in urine samples by complexation–supercritical fluid extraction and liquid or gas chromatography. J Chromatogr B 785:303

    Article  CAS  Google Scholar 

  10. Zhang L, Xu C, Li B (2009) Simple and sensitive detection method for chromium(VI) in water using glutathione-capped CdTe quantum dots as fluorescent probes. Microchim Acta 166:61–68

    Article  CAS  Google Scholar 

  11. Horita T, Xiong Y, Yoshinaga M, Kishimoto H, Yamaji K, Brito ME, Yokokawa H (2009) Determination of chromium concentration in solid oxide fuel cell cathodes: (La, Sr)MnO3 and (La, Sr)FeO3. Electrochem Solid State Lett 12(10):B146–B149

    Article  CAS  Google Scholar 

  12. James H, Carmack G, Freiser H (1972) Coated wire ion-selective electrodes. Anal Chem 44:856–857

    Article  CAS  Google Scholar 

  13. Desimoni E, Bassani I (1999) A polypyrrole-coated, piezoelectric sensor for Cr(VI) preliminary results. Anal Commun 36:45–46

    Article  CAS  Google Scholar 

  14. Choi WY, Minoura N, Moon SH (2005) Potentiometric Cr(VI) selective electrode based on novel ionophore-immobilized PVC membranes. Talanta 66:1254–1263

    Article  CAS  Google Scholar 

  15. Singh LP, Bhatnagar JM, Tanaka S, Tsue H, Mori M (2005) Selective anion recognition: charged diaza crown ethers based electrochemical sensors for chromate ions. Anal Chim Acta 546:199–205

    Article  CAS  Google Scholar 

  16. Hassan SSM, El-Shahawi MS, Othman AM, Mosaad MAA (2005) Potentiometric rhodamine-B based membrane sensor for the selective determination of chromium ions in wastewater. Anal Sci 21:673–678

    Article  CAS  Google Scholar 

  17. Ertürün HEK, Yilmaz M, Kilic E (2007) Construction of an anion-selective electrode: dichromate-selective electrode. Sensor Actuator B 127:497–504

    Article  Google Scholar 

  18. Choi YW, Moon SHA (2001) Study on hexachromic ion-selective electrode based on supported liquid membranes. Environ Monit Assess 70:167–180

    Article  CAS  Google Scholar 

  19. Choi YW, Moon SH (2004) Determination of Cr(VI) using an ion-selective electrode with SLMs containing Aliquat336. Environ Monit Assess 92:163–178

    Article  CAS  Google Scholar 

  20. Yari A, Bagheri H (2009) Determination of Cr(VI) with selective sensing of Cr(VI) anions by a PVC-Membrane electrode based on quinaldine red. J Chin Chem Soc 56:289–295

    CAS  Google Scholar 

  21. Muxel AA, de Jesús DA, Alfaya RVS, Alfaya AAS (2007) Silsesquioxane 3-n-propylpyridinium chloride: a new polymer for the potentiometric analysis of Cr(VI) in electroplating and leather industry wastes. J Brazil Chem Soc 18(3):572–576

    Article  CAS  Google Scholar 

  22. Migdalski J, Blaz T, Lewenstam A (1996) Conducting polymer-based ion-selective electrodes. Anal Chim Acta 322(3):141–149

    Article  CAS  Google Scholar 

  23. Bobacka J (2006) Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 18(1):7–18

    Article  CAS  Google Scholar 

  24. Ansari R, Fallah Delavar A (2009) Application of Poly 3-methylthiophene for removal of silver ion from aqueous solutions. J Appl Polym Sci 113:2293–2300

    Article  CAS  Google Scholar 

  25. Wallace GG, Spinks GM, Kane-Maguire LAP, Teasdale PR (2009) Conductive electroactive polymers. CRC Press; Taylor & Francis Group, Boca Raton

    Google Scholar 

  26. Ansari R, Fallah Delavar A, Aliakbar A, Mohammad-khah A (2012) Solid-state Cu(II) ion-selective electrode based on polyaniline-conducting polymer film doped with copper carmoisine dye complex. J Solid State Electrochem 16(3):869–875. doi:10.1007/s10008-011-1436-2

    Article  CAS  Google Scholar 

  27. Hutchins RS, Bachas LG (1995) Nitrate selective electrode developed by electrochemically mediated imprinting/doping of polypyrrole. Anal Chem 67:654–1660

    Article  Google Scholar 

  28. Li J, Wei W, Luo S (2010) A novel one-step electrochemical codeposition of carbon nanotubes-DNA hybrids and tiron doped polypyrrole for selective and sensitive determination of dopamine. Microchim Acta 171(1–2):109–116

    Article  CAS  Google Scholar 

  29. Zhou D, Spinks GM, Wallace GG, Tiyapiboonchaiya A, MacFarlane C, Sun DR (2003) Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes. Electrochim Acta 48:2355–2359

    Article  CAS  Google Scholar 

  30. Tian L, Qiu J, Zhou Y-C, Sun S-G (2010) Application of polypyrrole/GOx film to glucose biosensor based on electrochemical-surface plasmon resonance technique. Microchim Acta 169:269–275

    Article  CAS  Google Scholar 

  31. Xie C, Gao S, Guo Q, Xu K (2010) Electrochemical sensor for 2,4-dichlorophenoxy acetic acid using molecularly imprinted polypyrrole membrane as recognition element. Microchim Acta 169:145–152

    Article  CAS  Google Scholar 

  32. Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22

    Article  CAS  Google Scholar 

  33. Tai H, Jiang Y, Xie G, Yu J, Zhao M (2007) Self-assembly of TiO2/polypyrrole nanocomposite ultrathin films and application for an NH3 gas sensor. Int J Environ Anal Chem 87(8):539–551

    Article  CAS  Google Scholar 

  34. Park JH, Kim B-W, Nho Y-C (2008) Effect of oxidant on morphology and electrochemistry of polypyrrole-coated graphite fiber. Electrochem Solid-State Lett 11(5):A68–A71

    Article  CAS  Google Scholar 

  35. Ansari R (2006) Polypyrrole conducting electroactive polymers: synthesis and stability studies (review article). E- J Chem 3(13):186–201

    Article  CAS  Google Scholar 

  36. Wang J, Chen SP, Lin MA (1989) Use of different electropolymerization conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films. J Electroanal Chem 273:231–242

    Article  CAS  Google Scholar 

  37. Yamaura M, Hagiwana T, Iwata K (1988) Enhancement of electrical conductivity of polypyrrole film by stretching: Counter ion effect. Synthetic Met 26(3):209–224

    Article  CAS  Google Scholar 

  38. Dong S, Sun Z, Lu Z (1988) Chloride chemical sensor based on an organic conducting polypyrrole polymer. Analyst 113(10):1525–1528

    Article  CAS  Google Scholar 

  39. Dong S, Che G (1991) An electrochemical microsensor for chloride. Talanta 38(1):111–114

    Article  CAS  Google Scholar 

  40. Bakker E, Buhlmann P, Pretsch E (1997) Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem Rev 97:3083–3132

    Article  CAS  Google Scholar 

  41. Ansari R (2005) Electrochemical synthesis and characterization of electroactive conductining polypyrrole polymers. Russ J Electrochem 41(9):1071–1078

    Google Scholar 

  42. Ansari R, Khoshbakht Fahim N, Fallah Delavar A (2009) Removal of nitrite ions from aqueous solutions using conducting electroactive polymers. The Open Process Chem J 2:1–5

    CAS  Google Scholar 

  43. Jin C, Yang F, Yang W (2006) Electropolymerisation and ion exchange properties of polypyrrole film doped with p-toluene sulfonate. J Appl Polym Sci 101(4):2518–2522

    Article  CAS  Google Scholar 

  44. Paczosa-Bator B, Migdalski J, Lewenstam A (2006) Conducting polymer films as model biological membrane: electrochemical and ion-exchange properties of polypyrrole films doped with asparagines and glutamine. Electrochim Acta 51:2173–2181

    Article  CAS  Google Scholar 

  45. Willes GJ, Blaton NM, Peeters OM, Deranter CJ (1977) The interaction of chromium(VI), chromium(III) and chromium(II) with diphenylcarbazide, diphenylcarbazone and diphenylcarbadiazone. Anal Chim Acta 88:345–352

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the post graduate studies of university of Guilan for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ansari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, R., Delavar, A.F. & Mohammad-khah, A. A solid state Cr(VI) ion-selective electrode based on polypyrrole. Microchim Acta 178, 71–79 (2012). https://doi.org/10.1007/s00604-012-0802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0802-9

Keywords

Navigation