Skip to main content
Log in

Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have prepared silver oxide nanoparticles (NPs) by a simple solution method using reducing agents in alkaline medium. The resulting NPs were characterized by UV–vis and FT-IR spectroscopy, X-ray powder diffraction, and field-emission scanning electron microscopy. They were deposited on a glassy carbon electrode to give a sensor with a fast response towards methanol in liquid phase. The sensor also displays good sensitivity and long-term stability, and enhanced electrochemical response. The calibration plot is linear (r 2 = 0.8294) over the 0.12 mM to 0.12 M methanol concentration range. The sensitivity is ~2.65 μAcm−2 mM−1, and the detection limit is 36.0 μM (at a SNR of 3). We also discuss possible future prospective uses of this metal oxide semiconductor nanomaterial in terms of chemical sensing.

Un-doped silver oxide NPs are prepared by solution method, which is a promising material in a wide range of environmental applications due to their attractive properties. It is characterized by UV/visible, Raman, FT-IR spectroscopy’s, powder X-ray diffraction, and FE-SEM and applied for the fabrication of sensitive methanol sensor in short response time. The analytical performances of this sensors with large-active surface area of Ag2O NPs/AgE have higher sensitivity, lower detection limit, long-term stability, and exhibit highly enhanced toxic chemicals in reliable I-V method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cai ZH, Martin CR (1989) Conducting polymer microstructures: template synthesis and applications in energy storage. J Am Chem Soc 111:4138

    Article  CAS  Google Scholar 

  2. Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P (2003) Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity. Nano Lett 3:1229

    Article  CAS  Google Scholar 

  3. Rahman MM, Jamal A, Khan SB, Faisal M (2011) Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure Materials. Biosens Bioelectron 28:127

    Article  CAS  Google Scholar 

  4. Vijaya JJ, Kennedy LJ, Sekaran G, Jeyaraj B, Nagaraja KS (2008) Utilization of strontium added NiAl2O4 composites for the detection of methanol vapors. J Hazard Mater 153:767

    Article  CAS  Google Scholar 

  5. Sahay PP, Nath RK (2008) Al-doped ZnO thin films as methanol sensors. Sens Actuator B 134:654

    Article  Google Scholar 

  6. Wongchoosuk C, Wisitsoraat A, Tuantranont A, Kerdcharoen T (2010) Portable electronic nose based on carbon nanotube-SnO2 gas sensors and its application for detection of methanol contamination in whiskeys. Sens Actuator B 147:392

    Article  Google Scholar 

  7. Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1

    Article  CAS  Google Scholar 

  8. Wang CC, Weng YC, Chou TC (2007) Acetone sensor using lead foil as working electrode. Sens Actuator B 122:591

    Article  Google Scholar 

  9. Rahman MM, Jamal A, Khan SB, Faisal M (2011) Fabrication of highly sensitive ethanol chemical sensor based on Sm-Doped Co3O4 nanokernels by a hydrothermal method. J Phys Chem C 115:9503

    Article  CAS  Google Scholar 

  10. Rahman MM, Jamal A, Khan SB, Faisal M (2011) CuO codoped ZnO based nanostructured materials for sensitive chemical sensor applications. ACS App Mater Inter 3:1346

    Article  CAS  Google Scholar 

  11. Liu Q, Kirchhoff JR (2007) Amperometric detection of methanol with a methanol dehydrogenase modified electrode sensor. J Electroanal Chem 601:125

    Article  CAS  Google Scholar 

  12. Nogami M, Maeda T, Uma T (2009) A methanol gas sensor based on inorganic glass thin films. Sens Actuator B Chem 137:603

    Article  Google Scholar 

  13. Tao B, Zhang J, Hui S, Chen X, Wan L (2010) An electrochemical methanol sensor based on a Pd–Ni/SiNWs catalytic electrode. Electrochim Acta 55:5019

    Article  CAS  Google Scholar 

  14. Rahman MM, Jamal A, Khan SB, Faisal M (2011) Characterization and applications of as-grown β-Fe2O3 nanoparticles prepared by hydrothermal method. J Nanopart Res 13:3789

    Article  CAS  Google Scholar 

  15. Desai RR, Lakshminarayana D, Patel PB, Panchal CJ (2005) Indium sesquitelluride (In2Te3) thin film gas sensor for detection of carbon dioxide. Sens Actuator B Chem 107:523

    Article  Google Scholar 

  16. Mabrook M, Hawkins P (2001) A rapidly-responding sensor for benzene, methanol and ethanol vapours based on films of titanium dioxide dispersed in a polymer operating at room temperature. Sens Actuator B 75:197

    Article  Google Scholar 

  17. Nanto H, Minami T, Takata S (1986) Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity. J App Phys 60:482

    Article  CAS  Google Scholar 

  18. Mitra P, Maiti HS (2004) A wet-chemical process to form palladium oxide sensitizer layer on thin film zinc oxide based LPG sensor. Sens Actuators B 97:49

    Article  Google Scholar 

  19. Sahay PP (2005) Zinc oxide thin film gas sensor for detection of acetone. J Mat Sci 40:4383

    Article  CAS  Google Scholar 

  20. Huo LH, Cheng XL, Zhao H, Gao S, Xu Y, Zhao JG (2005) Preparation, characterization and gas sensitivity of copper naphthalocyanine derivatives LB films. Colloid Surface Physicochem Eng Aspect 257–258:137

    Article  Google Scholar 

  21. Ashak KI, McDonagh D, Durcan MA (2000) Development of new capacitive strain sensors based on thick film polymer and cermet technologies. Sens Actuator A Phys 79:102

    Article  Google Scholar 

  22. Neri G, Bonavita A, Rizzo G, Galvagno S, Capone S, Siciliano P (2005) Methanol gas-sensing properties of CeO2–Fe2O3 thin films. Sens Actuator B 114:687

    Article  Google Scholar 

  23. Patel SV, Wise KD, Gland JL, Zanini-Fisher M, Schwank JW (1997) Characteristics of silicon-micromachined gas sensors based on Pt/TiOx thin films. Sens Actuator B Chem 42:205

    Article  Google Scholar 

  24. Cheng XL, Zhao H, Huo LH, Gao S, Zhao JG (2004) ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens Actuators B 102:248

    Article  Google Scholar 

  25. Arshak K, Gaiden I (2005) Development of a novel gas sensor based on oxide thick films. Mater Sci Eng B 118:44

    Article  Google Scholar 

  26. Sahay PP, Tewari S, Jha S, Shamsuddin M (2005) Sprayed ZnO thin films for ethanol sensors. J Mater Sci 40:4791

    Article  CAS  Google Scholar 

  27. Hellegouarch F, Arefi-Khonsari F, Planade R, Amouroux J (2001) PECVD prepared SnO2 thin films for ethanol sensors. Sens Actuators B 73:27

    Article  Google Scholar 

  28. Patel NG, Patel PD, Vaishnav VS (2003) Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sens Actuator B 96:180

    Article  Google Scholar 

  29. Sahay PP, Nath RK (2008) Al-doped ZnO thin films as methanol sensors. Sens Actuator B 134:654

    Article  Google Scholar 

  30. Dikovska AO, Atanasova GB, Nedyalkov NN, Stefanov PK, Atanasov PA, Karakolev EI, Andreev AT (2010) Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber. Sens Actuator B 146:331

    Article  Google Scholar 

  31. Choudhury M, Nath SS, Chakdar D, Gope G, Nath RK (2010) Acetone Sensing of ZnO Quantum Dots Embedded in Polyvinyl Alcohol Matrix. Adv Sci Lett 3:6

    Article  CAS  Google Scholar 

  32. Wang H, Li Y, Chen Y, Yuan M, Yang M, Yuan W (2007) Composites of carbon black functionalized with polymers as candidates for the detection of methanol vapor. React Func Poly 67:977

    Article  CAS  Google Scholar 

  33. Lia G, Ma NZ, Wang Y (2005) A new handheld biosensor for monitoring blood ketones. Sens Actuator B 109:285

    Article  Google Scholar 

  34. Lee K, Lee JW, Kim SI, Ju BK (2011) Single-walled carbon nanotube/Nafion composites as methanol sensors. Carbon 49:787

    Article  CAS  Google Scholar 

  35. Yang JS, Park JH, Kim SI, Kim YT, Kim YH (2010) I–V characteristics of a methanol concentration sensor for direct methanol fuel cell (DMFC) by using catalyst electrode of Pt dots. Curr App Phys 10:370

    Article  Google Scholar 

  36. Yang JS, Park JH, Kim SI, Kim SY, Kim YT, Han IK (2008) I–V characteristics of a methanol sensor for direct methanol fuel cell (DMFC) as a function of deposited platinum (Pt) thickness. Microelectron J 39:1140

    Article  CAS  Google Scholar 

  37. Yang JS, Park JH, Kim SI, Kim SY, Kim YT, Han IK (2008) I–V characteristics of a methanol sensor for direct methanol fuel cell (DMFC) as a function of deposited platinum (Pt) thickness. Microelectron J 39:1140

    Google Scholar 

Download references

Acknowledgements

Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry department, King Abdulaziz University, Jeddah, Saudi Arabia is highly acknowledged. Authors are thankful to the Deanship of Scientific Research and Centre for Advanced Materials and Nano-Engineering (CAMNE), Najran University, Najran, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed M. Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M.M., Khan, S.B., Jamal, A. et al. Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method. Microchim Acta 178, 99–106 (2012). https://doi.org/10.1007/s00604-012-0817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0817-2

Keywords

Navigation