Skip to main content
Log in

Biosensor for aluminium(III) based on its inhibition of α-chymotrypsin immobilized on a screen-printed carbon electrode modified with gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on an amperometric assay for Al(III) ions that is based on the inhibition of the enzyme α-chymotrypsin. Screen-printed carbon electrodes modified with gold nanoparticles were used as solid supports for the immobilization of the enzyme. The amperometric response of the synthetic enzyme substrate substrate N-benzoyl-L-tyrosine ethyl ester is affected by Al(III) ions, and this leads to a decrease in the amperometric oxidation current. The assay has a detection limit of 3.3 μM of Al(III). The repeatability and reproducibility of the method are 6.9% (n = 3) and 6.4% (n = 5), respectively. Main interferents include Mo(VI), W(VI) and Fe(III) ions. The method was successfully applied to the determination of Al(III) in tap water.

An electrochemical biosensor for Al (III) was developed based on screen-printed carbon electrodes modified with gold nanoparticles and the enzyme α- chymotrypsin. The biosensor had high sensitivity, high selectivity, ease of use and construction for Al (III) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lachlan DRM (1996) Toxicologic of Metals. In: E.L.W. (ed) Boca Raton

  2. Granadillo VA, Fernandez DR, Vasquez AD, Garcia CJ, Semprun BI, Hernandez M, Colina M (2007) Aluminum levels in drinking water from Maracaibo City determined by electrothermal atomization atomic absorption spectrometry. Atom Spectrosc 28:73–79

    CAS  Google Scholar 

  3. Narin I, Tuzen M, Soylak M (2004) Aluminium determination in environmental samples by graphite furnace atomic absorption spectrometry after solid phase extraction on Amberlite XAD-1180/pyrocatechol violet chelating resin. Talanta 63:411–418

    Article  CAS  Google Scholar 

  4. Smeyersverbeke J, Verbeelen D (1988) Determination of aluminum in dialysate concentrates by lvov platform graphite-furnace atomic-absorption spectrometry. Anal Chem 60:380–383

    Article  CAS  Google Scholar 

  5. Sukharev SN, Delegan-Kokaiko SV, Sukhareva OY (2010) Atomic-absorption determination of aluminum in waters. J Water Chem Technol 32:223–226

    Article  Google Scholar 

  6. Weijun L, Shouzhi P, Duohua J, Shiqiang C, Gang L, Congbin F (2011) Fluorescent probes for Al(III) and Cr(III) based on a photochromic diarylethene bearing a fluorescent rhodamine unit. Microchim Acta 174:329–336

    Article  Google Scholar 

  7. Blanco CA, Sancho D, Caballero I (2010) Aluminium content in beers and silicon sequestering effects. Food Res Int 43:2432–2436

    Article  CAS  Google Scholar 

  8. Shahryar A, Atusa B, Abbas F (2010) Quantification of sub-nanomolar levels of aluminum by adsorptive stripping voltammetry using rubeanic acid as a selective chelating agent. Electroanalysis 22:1889–1893

    Article  Google Scholar 

  9. Beltagi AM, Ghoneim MM (2009) Simultaneous determination of trace aluminum (III), copper (II) and cadmium (II) in water samples by square-wave adsorptive cathodic stripping voltammetry in the presence of oxine. J Appl Electrochem 39:627–636

    Article  CAS  Google Scholar 

  10. Arancibia V, Munoz C (2007) Determination of aluminium in water samples by adsorptive cathodic stripping voltammetry in the presence of pyrogallol red and a quaternary ammonium salt. Talanta 73:546–552

    Article  CAS  Google Scholar 

  11. Thomas SD, Davey DE, Mulcahy DE, Chow CWK (2006) Determination of aluminum by adsorptive cathodic stripping voltammetry with 1,2-dihydroxyanthraquinone-3-sulfonic acid (DASA): Effect of thin mercury film electrode. Electroanalysis 18:2257–2262

    Article  CAS  Google Scholar 

  12. Qiong L, Lirong W, Danli X, Guanghan L (2006) Determination of trace aluminum in foods by stripping voltammetry. Food Chem 97:176–180

    Article  Google Scholar 

  13. Carvalho LM, do Nascimento PC, Bohrer D (2005) Determination of aluminum as contaminant in dialysis concentrates by adsorptive cathodic stripping voltammetry. Anal Chim Acta 546:79–84

    Article  Google Scholar 

  14. Cámara Vargas M, Domínguez Renedo O, Arcos Martinez MJ (2003) Simultaneous determination of chromium(VI) and aluminum(III) by adsorptive stripping voltammetry with pyrocatechol violet. Helv Chim Acta 86:2434–2440

    Article  Google Scholar 

  15. Locatelli C (2003) Simultaneous determination of aluminum and iron in high salt content matrices by adsorptive stripping voltammetry. Application to dialysis fluids. Electroanalysis 15:1397–1402

    Article  CAS  Google Scholar 

  16. Wang XL, Bi SP, Gan N (2001) Aluminum speciation with adsorptive pyrocatechol violet-Al(III) complex by derivative adsorption chronopotentiometry. Electroanalysis 13:1279–1286

    Article  CAS  Google Scholar 

  17. Wang XL, Lei JP, Bi SP (2001) Determination of the speciation of aluminum(III) in natural waters by adsorption stripping voltammetry and complexation with Al-III-solochrome violet RS. Anal Chim Acta 449:35–44

    Article  CAS  Google Scholar 

  18. Bi SP, Song MJ, Xu D (1998) Chronopotentiometric determination of aluminum by solochrome violet RS. Anal Lett 31:1937–1946

    Article  CAS  Google Scholar 

  19. Lo Balbo A, Dall’Orto VC, Sobral S (1998) Linear scan stripping voltammetry at glassy-carbon based thin mercury film electrodes for determination of trace aluminium in dialysis fluids. Anal Lett 31:2717–2728

    Article  CAS  Google Scholar 

  20. El Maali NA, Temerk YM, ElAziz MSB (1997) Application of stripping voltammetry at a static mercury drop electrode for the determination of aluminium and iron in Portland cement. Anal Chim Acta 353:313–318

    Article  Google Scholar 

  21. Opydo J (1997) Determination of aluminium in tree samples by cathodic adsorptive stripping voltammetry. Talanta 44:1081–1086

    Article  CAS  Google Scholar 

  22. Karpiuk M, Politowicz M, Stryjewska E (1995) Adsorptive voltammetry for the determination of trace amounts of aluminum in blood-serum derived products. Fresen J Anal Chem 351:693–695

    Article  CAS  Google Scholar 

  23. Deng PH, Fei JJ, Zhang J, Feng YL (2011) Determination of trace aluminum by anodic adsorptive stripping voltammetry using a multi-walled carbon nanotube modified carbon paste electrode. Anal Lett 44:1521–1535

    Article  CAS  Google Scholar 

  24. Wang HM, Yu ZL, Wang ZL, Hao HJ, Chen YM, Wan PY (2011) Preparation of a preplated bismuth film on Pt electrode and its application for determination of trace aluminum(III) by adsorptive stripping voltammetry. Electroanalysis 23:1095–1099

    Article  CAS  Google Scholar 

  25. Kefala G, Economou A, Sofoniou M (2006) Determination of trace aluminium by adsorptive stripping voltammetry on a preplated bismuth-film electrode in the presence of cupferron. Talanta 68:1013–1019

    Article  CAS  Google Scholar 

  26. Liu J, Bi SP, Yang L (2002) Speciation analysis of aluminium(III) in natural waters and biological fluids by complexing with various catechols followed by differential pulse voltammetry detection. Analyst 127:1657–1665

    Article  CAS  Google Scholar 

  27. Liu J, Wang XL, Chen G (2001) Speciation of aluminium(III) in natural waters using differential pulse voltammetry with a Pyrocatechol Violet-modified electrode. Analyst 126:1404–1408

    Article  CAS  Google Scholar 

  28. Zhang FP, Bi SP, Li HZ (2001) Application of L-dopa as an electroactive ligand for indirect determination of aluminum in biological samples by differential pulse voltammetry. Electroanalysis 13:1054–1058

    Article  CAS  Google Scholar 

  29. El-Maali NA, Abd el-Hady D, Abd el-Hamid M (2000) Use of adsorptive stripping voltammetry at the glassy carbon electrode for the simultaneous determination of magnesium(II) and aluminium(III) - Application to some industrial samples. Anal Chim Acta 417:67–75

    Article  Google Scholar 

  30. Cai QT, Khoo SB (1993) Determination of trace aluminum by differential pulse adsorptive stripping voltammetry of aluminum(III)-8-hydroxyquinoline complex. Anal Chim Acta 276:99–108

    Article  CAS  Google Scholar 

  31. Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ (2007) Recent developments in the field of screen-printed electrodes and their related applications. Talanta 73:202–219

    Article  Google Scholar 

  32. Domínguez-Renedo O, Arcos-Martínez MJ (2006) Electrochemical Biosensors, in Encyclopedia of Sensors. American Scientific Publishers, USA

    Google Scholar 

  33. Krawczyk TKV, Moszczynska T, Trojanowicz M (2000) Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor. Biosens Bioelectron 15:681–691

    Article  Google Scholar 

  34. Mohammadi H, El Rhazi M, Amine A, Brett AMO, Brett CMA (2002) Determination of mercury(II) by invertase enzyme inhibition coupled with batch injection analysis. Analyst 127:1088–1093

    Article  CAS  Google Scholar 

  35. Angeletti M, Lupidi G, Eleuteri AM, Tacconi R, Fioretti E, Coletta M (1997) Effect of aluminum on the binding properties of alpha-chymotrypsin. J Biol Inorg Chem 2:320–326

    Article  CAS  Google Scholar 

  36. Balti R, Bougatef A, Khaled Hayet B, Nedjar-Arroume N, Guillochon D, Dhulster P, Nasri M (2012) Chymotrypsin from the hepatopancreas of cuttlefish (Sepia officinalis) with high activity in the hydrolysis of long chain peptide substrates: Purification and biochemical characterisation. Food Chem 130:475–484

    Article  CAS  Google Scholar 

  37. Ugo P, Moretto LM, Bertoncello P, Wang J (1998) Determination of trace mercury in saltwaters at screen-printed electrodes modified with sumichelate Q10R. Electroanalysis 10:1017–1021

    Article  CAS  Google Scholar 

  38. Ren ML, Meng XW, Chen D, Tang FQ, Jiao J (2005) Using silver nanoparticle to enhance current response of biosensor. Biosens Bioelectron 21:433–437

    Article  CAS  Google Scholar 

  39. Fang W, Shengshui H (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22

    Article  Google Scholar 

  40. Domínguez-Renedo O, Arcos-Martínez MJ (2007) A novel method for the anodic stripping voltammetry determination of Sb(III) using silver nanoparticle-modified screen-printed electrodes. Electrochem Commun 9:820–826

    Article  Google Scholar 

  41. Gonzalo-Ruiz J, Alonso-Lomillo MA, Munoz FJ (2007) Screen-printed biosensors for glucose determination In grape juice. Biosens Bioelectron 22:1517–1521

    Article  CAS  Google Scholar 

  42. Dominguez-Renedo O, Alonso-Lomillo MA, Ferreira-Goncalves L, Arcos-Martinez MJ (2009) Development of urease based amperometric biosensors for the inhibitive determination of Hg (II). Talanta 79:1306–1310

    Article  CAS  Google Scholar 

  43. Domínguez-Renedo O, Arcos-Martínez MJ (2007) Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes. Anal Chima Acta 589:255–260

    Article  Google Scholar 

  44. Andreescu S, Barthelmebs L, Marty JL (2002) Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Anal Chim Acta 464:171–180

    Article  CAS  Google Scholar 

  45. Stoytcheva M, Sharkova V, Magnin JP (1998) Electrochemical approach in studying the inactivation of immobilized acetylcholinesterase by arsenate(III). Electroanalysis 10:994–998

    Article  CAS  Google Scholar 

  46. Stoytcheva M, Sharkova V (2002) Kinetics of the inhibition of immobilized acetylcholinesterase with Hg(II). Electroanalysis 14:1007–1010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge funding via Research Vicerrectory of Costa Rica University (Project 804-B0-051) and Spanish Ministry of Science and Innovation (TEC-2009/12029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Domínguez-Renedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barquero-Quirós, M., Domínguez-Renedo, O., Alonso-Lomillo, M.A. et al. Biosensor for aluminium(III) based on its inhibition of α-chymotrypsin immobilized on a screen-printed carbon electrode modified with gold nanoparticles. Microchim Acta 179, 65–70 (2012). https://doi.org/10.1007/s00604-012-0864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0864-8

Keywords

Navigation