Skip to main content
Log in

Local surface plasmon resonance of single silver nanorice particles in the near-infrared

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the synthesis and optical spectra of silver nanorice particles. Two strong absorption bands are resolved in the near UV and near-IR region, and the dark field scattering spectra are consistent with the absorption spectra. Finite-difference time-domain simulations reveal that the peak in the IR region can be attributed to the E field that is parallel to the long axis, while the peak in the UV can be attributed to the E field perpendicular to the short axis of the silver nanorice particles.

This paper reports on the synthesis of Ag nanorices, and their characterization by optical absorption, TEM, dark field scattering microscopy of single Ag nanorice and theoretical simulations using time domain finite-difference time-domain method. Electric field distribution of Ag nanorice dimer excited by polarization along long axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698

    Article  CAS  Google Scholar 

  2. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189

    Article  CAS  Google Scholar 

  3. Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD (2007) Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450:402

    Article  CAS  Google Scholar 

  4. Sun MT, Xu HX (2012) A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8:2777

    Article  CAS  Google Scholar 

  5. Dong B, Fang YR, Xia LX, Xu HX, Sun MT (2011) Is 4-nitrobenzenethiol converte to p, p’-dimercaptoazobenzene or 4-aminothiophenol by surface photochemistry reaction? J Raman Spectrosc 42:1205

    Article  CAS  Google Scholar 

  6. Dong B, Fang YR, Chen XW, Xu HX, Sun MT (2011) Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p, p’-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 27:10677

    Article  CAS  Google Scholar 

  7. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547

    Article  CAS  Google Scholar 

  8. Soennichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741

    Article  CAS  Google Scholar 

  9. Huang YZ, Fang YR, Yang ZL, Sun MT (2010) Can p, p’-dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film? J Phys Chem C 114:18263

    Article  CAS  Google Scholar 

  10. Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching nmulticolor optical immunolabels. Proc Natl Acad Sci U S A 97:996

    Article  CAS  Google Scholar 

  11. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721

    Article  CAS  Google Scholar 

  12. Huang LL, Chen XZ, Bai BF, Tan QF, Jin GF, Zentgraf T, Zhang S (2013) Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci Appl 2:e70

    Article  Google Scholar 

  13. Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115

    Article  CAS  Google Scholar 

  14. Yang ZL, Li Y, Li ZP, Wu DY, Kang JY, Xu HX, Sun MT (2009) Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles. J Chem Phys 130:234705

    Article  Google Scholar 

  15. Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402

    Article  CAS  Google Scholar 

  16. Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Scattering spectra of single gold nanoshells. Nano Lett 4:2355

    Article  CAS  Google Scholar 

  17. Su YH, Ke YF, Cai SL, Yao QY (2012) Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci Appl 1:e14

    Article  Google Scholar 

  18. Schnell M, Etxarri AG, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R (2009) Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonics 3:287

    Article  CAS  Google Scholar 

  19. Sun MT, Zhang ZL, Zheng HR, Xu HX (2012) In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci Rep 2:647

    Article  Google Scholar 

  20. Sun MT, Fang YR, Zhang ZY, Xu HX (2013) Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy. Phys Rev E 87:020401

    Article  Google Scholar 

  21. Chen YH, Huang L, Gan L, Li ZY (2012) Wavefront shaping of infrared light through a subwavelength hole. Light Sci Appl 1:e26

    Article  Google Scholar 

  22. Huang YZ, Fang YR, Sun MT (2011) Remote excitation of surface-enhanced Raman scattering on single Au nanowire with quasi-spherical termini. J Phys Chem C 115:3558

    Article  CAS  Google Scholar 

  23. Lamprecht B, Krenn JR, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg FR, Weeber JC (2001) Surface plasmon propagation in microscale metal stripes. Appl Phys Lett 79:51

    Article  CAS  Google Scholar 

  24. Sun MT, Zhang ZL, Kim ZH, Zheng HR, Xu HX (2013) Plasmonic scissors for molecular design. Chem Eur J 19:14958

    Article  CAS  Google Scholar 

  25. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver nanowires as surface plasmon resonators. Phys Rev Lett 95:257403

    Article  Google Scholar 

  26. Sun MT, Hou YX, Xu HX (2011) Can information of chemical reaction propagate with plasmonic waveguide and be detected at remote terminal of nanowire? Nanoscale 3:4114

    Article  CAS  Google Scholar 

  27. Chandrasekhar N, Mohiddon MA, Chandrasekar R (2013) Organic submicro tubular optical waveguides: self-assembly: diverse geometries, efficiency, and remote sensing properties. Adv Opt Mater 1:305

    Article  Google Scholar 

  28. Sun MT, Zhang Z, Wang P, Li Q, Ma F, Xu H (2013) Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light Sci Appl 2: in press. dio:10.1038/lsa.2013.68

  29. Tian XR, Chen L, Xu HX, Sun MT (2012) Ascertaining genuine SERS spectra of p-aminothiopheno. RSC Adv 2:8289

    Article  CAS  Google Scholar 

  30. Fang YR, Li ZP, Huang YZ, Zhang SP, Nordlander P, Halas NJ, Xu HX (2010) Branched silver nanowires as controllable plasmon routers. Nano Lett 10:1950

    Article  CAS  Google Scholar 

  31. Sun MT, Zhang ZL, Chen L, Xu HX (2013) Tip-enhanced resonance couplings revealed by high vacuum tip-enhanced Raman spectroscopy. Adv Opt Mater 1:449

    Article  Google Scholar 

  32. Fang YR, Li YZ, Xu HX, Sun MT (2010) Ascertaining p, p’-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir 26:7737

    Article  CAS  Google Scholar 

  33. Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302

    Article  Google Scholar 

  34. Palik ED (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  35. Tong LM, Miljković VD, Käll M (2010) Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett 10:268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Program (2012CB626801), the National Science Foundation of China (Grant No. 11274057 and 11374353), Science and Technology Project of Liaoning Province (Grant No. 2012222009), Program for Liaoning Excellent Talents in University (LNET) (Grant No. LJQ2012112), the Fundamental Research Funds for the Central Universities (Grant No. DC12010117), Science and Technique Foundation of Dalian (Grant No. 2010J21DW024 and 2012J21DW016), Science and Technology Project of Jinzhou New District (Grant No. 2012-A1-051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, B., Qin, D., Shi, H.L. et al. Local surface plasmon resonance of single silver nanorice particles in the near-infrared. Microchim Acta 181, 791–795 (2014). https://doi.org/10.1007/s00604-013-1135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1135-z

Keywords

Navigation