Skip to main content
Log in

Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly(p-aminobenzenesulfonate)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode was modified with a nanocomposite prepared from poly(p-aminobenzene sulfonic acid), multi-walled carbon nanotubes and chitosan to obtain a differential pulse voltammetric sensor for serotonin that is remarkably stable and displays enhanced current response. Its peak current (at 0.38 V vs. Ag/AgCl) varied linearly with the concentration of serotonin in the 0.1–100 μM range, and the detection limit is 80 nM (at an S/N of 3). The sensor was successfully applied to the determination of serotonin in (spiked) human blood serum.

An electrode modified with MWCNTs, chitosan and poly(p-aminobenzene sulfonate) gives significantly enhanced signals for serotonin and improves its oxidation peak current as shown in plot (d) due to improved direct electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baughman RH, Zakhidov AA, Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  2. Sun YP, Fu KF, Lin Y, Huang WJ (2002) Functionalized Carbon nanotubes: properties and applications. Acc Chem Res 12(2002):1096–1104

    Article  Google Scholar 

  3. Boo H, Jeong RA, Park S, Kim KS (2006) Electrochemical nanoneedle biosensor based on multiwall carbon nanotube. Anal Chem 2:617–620

    Article  Google Scholar 

  4. Yin YJ, Lu YF, Wu P, Cai CX (2005) Direct electrochemistry of redox proteins and enzymes promoted by carbon nanotubes. Sensors 4:220–234

    Article  Google Scholar 

  5. Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 12:6017–6084

    Article  Google Scholar 

  6. Ashmore M, Hearn J (2000) Flocculation of model latex particles by chitosans of varying degrees of acetylation. Langmuir 11:4906–4911

    Article  Google Scholar 

  7. Bodnar M, Hartmann JF, Borbely J (2005) Preparation and characterization of chitosan-based nanoparticles. Biomacromolecules 5:2521–2527

    Article  Google Scholar 

  8. Cruz J, Kawasaki M, Gorski W (2000) Electrode coatings based on chitosan scaffolds. Anal Chem 4:680–686

    Article  Google Scholar 

  9. Zhang MG, Smith A, Gorski W (2004) Carbon nanotube chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 17:5045–5050

    Article  Google Scholar 

  10. Zhang H, Oh M, Allen C, Kumacheva E (2004) Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 6:2461–2468

    Article  Google Scholar 

  11. Lau C, Cooney MJ (2008) Conductive macroporous composite chitosan − carbon nanotube scaffolds. Langmuir 13:7004–7010

    Article  Google Scholar 

  12. Glennon RA (2003) Higher-end serotonin receptors: 5-HT5, 5-HT6, and 5-HT7. J Med Chem 14:2795–2812

    Article  Google Scholar 

  13. Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 4:1614–1641

    Article  Google Scholar 

  14. Goyal RN, Oyama M, Gupta VK, Singh SP, Sharma RA (2008) Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes. Sens Actuators B Chem 134:816–821

    Article  CAS  Google Scholar 

  15. Wu KB, Fei JJ, Hu SH (2003) Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal Biochem 1:100–106

    Article  Google Scholar 

  16. Sun Y, Fei J, Hou J, Zhang Q, Liu Y, Hu B (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165:373–379

    Article  CAS  Google Scholar 

  17. Li Y, Huang X, Chen Y, Wang L, Lin X (2009) Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode. Microchim Acta 164:107–112

    Article  CAS  Google Scholar 

  18. Babaei A, Babazadeh M (2011) A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanalysis 7:1726–1735

    Article  Google Scholar 

  19. Abbaspour A, Noori A (2011) A cyclodextrin host–guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens Bioelectron 26:4674–4680

    Article  CAS  Google Scholar 

  20. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2014) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta. doi:10.1007/s00604-014-1308-4

    Google Scholar 

  21. Renbutsu E, Hirose M, Omura Y, Nakatsubo F, Saimoto H, Shigemasa Y, Minami S (2005) Preparation and biocompatibility of novel UV-curable chitosan derivatives. Biomacromolecules 5:2385–2388

    Article  Google Scholar 

  22. Ogawa S, Decker EA, McClements DJ (2004) Production and characterization of O/W emulsions containing droplets stabilized by lecithin − chitosan − pectin mutilayered membranes. J Agric Food Chem 11:3595–3600

    Article  Google Scholar 

  23. Li YX, Huang X, Chen YL, Wang L, Lin XQ (2009) Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode. Microchim Acta 164:107–112

    Article  CAS  Google Scholar 

  24. Jin GP, Chen QZ, Ding YF, He JB (2007) Electrochemistry behavior of adrenalin, serotonin and ascorbic acid at novel poly rutin modified paraffin-impregnated graphite electrode. Electrochim Acta 52:2535–2541

    Article  CAS  Google Scholar 

  25. Gupta P, Goyal RN (2014) Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin. Talanta 120:17–22

    Article  CAS  Google Scholar 

  26. Jin GP, Lin XQ, Gong JM (2004) Novel choline and acetylcholine modified glassy carbon electrodes for simultaneous determination of dopamine, serotonin and ascorbic acid. J Electroanal Chem 569:135–142

    Article  CAS  Google Scholar 

  27. Parker KH, O’Hare D (2006) Subsecond voltammetric separation between dopamine and serotonin in the presence of ascorbate. Anal Chem 19:6990–6998

    Google Scholar 

  28. Wang ZH, Liang QL, Luo GA (2003) Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J Electroanal Chem 540:129–134

    Article  CAS  Google Scholar 

  29. Ardakani MM, Khoshroo A (2014) High sensitive sensor based on functionalized carbon nanotube/ionic liquid nanocomposite for simultaneous determination of norepinephrine and serotonin. J Electroanal Chem 717:17–23

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support of this study by Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir fund project (no.WEPKL2013QN-02)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Ran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, G., Chen, C. & Gu, C. Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly(p-aminobenzenesulfonate). Microchim Acta 182, 1323–1328 (2015). https://doi.org/10.1007/s00604-015-1454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1454-3

Keywords

Navigation