Skip to main content
Log in

Sensitive and fast optical HCl gas sensor using a nanoporous fiber membrane consisting of poly(lactic acid) doped with tetraphenylporphyrin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly sensitive and fast sensor for gaseous hydrogen chloride (HCl) is described. It is based on the use of the optical probe 5,10,15,20-tetraphenylporphyrin contained in a poly(lactic acid) nanoporous fiber membrane that was fabricated via electrospinning. With its porous structure, the sensor overcomes the slow gas absorption and diffusion of other sensing materials. Field emission SEM was employed to characterize the morphology of the sensing membrane. The exposure to HCl gas causes a color change from pink to green that is due to the protonation of the central nitrogen atoms of the porphyrin, and fluorescence is quenched. The largest increase in absorbance occurs at 442 nm. HCl gas can be detected in this way even at sub-ppm levels. The detection limit is 34 ppb, and the response time is as short as 5 s. The sensor is highly stable after ten cycles of tracing HCl gas and recovery, and response is fully reversible.

A fast responding HCl gas sensor was obtained by incorporating the optical probe 5,10,15,20-tetraphenylporphyrin (TPPH2) into a poly(lactic acid) nanoporous fiber membrane by electrospinning. On exposure to HCl gas, the peak of the Soret band undergoes a bathochromic shift from 418 to 442 nm, and the color of the film changes from pink to green

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kalimuthu P, Sivanesan A, John SA (2012) Fabrication of optochemical and electrochemical sensors using thin films of porphyrin and phthalocyanine derivatives. J Chem Sci 124:1315–1325

    Article  CAS  Google Scholar 

  2. Muthukumar P, John SA (2011) Highly sensitive detection of HCl gas using a thin film of meso-tetra(4-pyridyl)porphyrin coated glass slide by optochemical method. Sensors Actuators B Chem 159:238–244

    Article  CAS  Google Scholar 

  3. Itagaki Y, Yamanaka S, Sadaoka Y (2011) HCl Detection Using Polymer-Porphyrin Composite Coated Optical Fiber Sensor. Sens Lett 9:114–117

    Article  CAS  Google Scholar 

  4. Nakagawa K, Tanaka K, Kitagawa T, Sadaoka Y (1998) Optochemical HCl gas sensor using substituted tetraphenylporphine-ethylcellulose composite films. J Mater Chem 8:1199–1204

    Article  CAS  Google Scholar 

  5. Nakagawa K, Kitagawa T, Sadaoka Y (1998) An optochemical HCl gas sensor using 5,10,15,20-tetrakis (3 ',5 '-di-tert-butyl,4 '-hydroxyphenyl) porphin-ethylcellulose composite films. Sensors Actuators B Chem 52:10–14

    Article  CAS  Google Scholar 

  6. De Luca G, Pollicino G, Romeo A, Scolaro LM (2006) Sensing behavior of tetrakis(4-sulfonatophenyl)porphyrin thin films. Chem Mater 18:2005–2007

    Article  Google Scholar 

  7. Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713

    Article  CAS  Google Scholar 

  8. LaGasse MK, Rankin JM, Askim JR, Suslick KS (2014) Colorimetric sensor arrays: Interplay of geometry, substrate and immobilization. Sensors Actuators B Chem 197:116–122

    Article  CAS  Google Scholar 

  9. Maqueira L, Valdés AC, Iribarren A, de Melo CP (2013) Preparation and characterization of hydrophobic porphyrin nanoaggregates dispersed in polyvinyl alcohol films. J Porphyrins Phthalocyanines 17:283–288

    Article  CAS  Google Scholar 

  10. Castillero P, Sanchez-Valencia JR, Cano M, Pedrosa JM, Roales J, Barranco A, Gonzalez-Elipe AR (2010) Active and optically transparent tetracationic porphyrin/TiO2 composite thin films. ACS Appl Mater Interfaces 2:712–721

    Article  CAS  Google Scholar 

  11. Dunbar ADF, Richardson TH, Hutchinson J, Hunter CA (2008) Langmuir–Schaefer films of five different free base tetraphenylporphyrins for optical-based gas sensing of NO2. Sensors Actuators B Chem 128:468–481

    Article  CAS  Google Scholar 

  12. Nakagawa K, Kumon K, Tsutsumi C, Tabuchi K, Kitagawa T, Sadaoka Y (2000) HCl gas sensing properties of TPPH2 dispersed in various copolymers. Sensors Actuators B Chem 65:138–140

    Article  CAS  Google Scholar 

  13. Itagaki Y, Deki K, Nakashima S-I, Sadaoka Y (2005) Toxic gas detection using porphyrin dispersed polymer composites. Sensors Actuators B Chem 108:393–397

    Article  CAS  Google Scholar 

  14. Itagaki Y, Deki K, Nakashima S-I, Sadaoka Y (2006) Development of porphyrin dispersed sol-gel films as HCl sensitive optochemical gas sensor. Sensors Actuators B Chem 117:302–307

    Article  CAS  Google Scholar 

  15. Spadavecchia J, Ciccarella G, Siciliano P, Capone S, Rella R (2004) Spin-coated thin films of metal porphyrin-phthalocyanine blend for an optochemical sensor of alcohol vapours. Sensors Actuators B Chem 100:88–93

    Article  CAS  Google Scholar 

  16. Jiang S, Liu M (2004) A chiral switch based on dye-intercalated layer-by-layer assembled DNA film. Chem Mater 16:3985–3987

    Article  CAS  Google Scholar 

  17. Muthukumar P, John SA (2012) Optochemical ammonia gas sensing properties of meso-substituted porphyrin derivatives immobilized Nafion film on glass slide. Sensors Actuators B Chem 174:74–80

    Article  CAS  Google Scholar 

  18. Nakagawa K, Aono T, Ueda G, Tsutsumi C, Hayase N, Mabuchi M, Sadaoka Y (2005) Development of an eco-friendly optical sensor element based on tetraphenylporphyrin derivatives dispersed in biodegradable polymer. Sensors Actuators B Chem 108:542–546

    Article  CAS  Google Scholar 

  19. Sun XC, Bruckner C, Nieh MP, Lei Y (2014) A fluorescent polymer film with self-assembled three-dimensionally ordered nanopores: preparation, characterization and its application for explosives detection. J Mater Chem A 2:14613–14621

    Article  CAS  Google Scholar 

  20. Lin FW, Xu XL, Wan LS, Wu J, Xu ZK (2015) Porphyrinated polyimide honeycomb films with high thermal stability for HCl gas sensing. Rsc Adv 5:30472–30477

    Article  CAS  Google Scholar 

  21. Jia LC, Cai WP (2010) Micro/Nanostructured Ordered Porous Films and Their Structurally Induced Control of the Gas Sensing Performances. Adv Funct Mater 20:3765–3773

    Article  CAS  Google Scholar 

  22. Wolf C, Tscherner M, Kostler S (2015) Ultra-fast opto-chemical sensors by using electrospun nanofibers as sensing layers. Sensors Actuators B Chem 209:1064–1069

    Article  CAS  Google Scholar 

  23. Li Y, Lim CT, Kotaki M (2015) Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer 56:572–580

    Article  CAS  Google Scholar 

  24. Laiva AL, Venugopal JR, Sridhar S, Rangarajan B, Navaneethan B, Ramakrishna S (2014) Novel and simple methodology to fabricate porous and buckled fibrous structures for biomedical applications. Polymer 55:5837–5842

    Article  Google Scholar 

  25. Xue RP, Behera P, Xu JS, Viapiano MS, Lannutti JJ (2014) Polydimethylsiloxane core-polycaprolactone shell nanofibers as biocompatible, real-time oxygen sensors. Sensors Actuators B Chem 192:697–707

    Article  CAS  Google Scholar 

  26. Yuan WJ, Huang L, Zhou QQ, Shi GQ (2014) Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS Appl Mater Interfaces 6:17003–17008

    Article  CAS  Google Scholar 

  27. Lv Y-Y, Wu J, Xu Z-K (2010) Colorimetric and fluorescent sensor constructing from the nanofibrous membrane of porphyrinated polyimide for the detection of hydrogen chloride gas. Sensors Actuators B Chem 148:233–239

    Article  CAS  Google Scholar 

  28. Zhang CM, Salick MR, Cordie TM, Effingham T, Dan Y, Turng LS (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mat Sci Eng C-Mater 49:463–471

    Article  CAS  Google Scholar 

  29. Zhu Y, Yang DY, Ma HW (2010) One-step fabrication of porous polymeric microcage via electrified jetting. Nanoscale 2:910–912

    Article  CAS  Google Scholar 

  30. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72

    Article  CAS  Google Scholar 

  31. Qi ZH, Yu H, Chen YM, Zhu MF (2009) Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(L-lactic acid). Mater Lett 63:415–418

    Article  CAS  Google Scholar 

  32. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules 37:573–578

    Article  CAS  Google Scholar 

  33. Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35:8456–8466

    Article  CAS  Google Scholar 

  34. Xu J, Zhang JH, Gao WQ, Liang HW, Wang HY, Li JF (2009) Preparation of chitosan/PLA blend micro/nanofibers by electrospinning. Mater Lett 63:658–660

    Article  CAS  Google Scholar 

  35. Feng YY, Chen SH, Guo WJ, Zhang YX, Liu GZ (2007) Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5 M H2SO4 solutions. J Electroanal Chem 602:115–122

    Article  CAS  Google Scholar 

  36. Nakagawa K, Sadaoka Y, Supriyatno H, Kubo A, Tsutsumi C, Tabuchi K (2001) Optochemical HCl gas detection using alkoxy substituted tetraphenylporphyrin-polymer composite films: Effects of alkoxy chain length on sensing characteristics. Sensors Actuators B Chem 76:42–46

    Article  CAS  Google Scholar 

  37. Kalimuthu P, Abraham John S (2008) Optochemical sensing of hydrogen chloride gas using meso-tetramesitylporphyrin deposited glass plate. Anal Chim Acta 627:247–253

    Article  CAS  Google Scholar 

  38. Evyapan M, Dunbar ADF (2015) Improving the selectivity of a free base tetraphenylporphyrin based gas sensor for NO2 and carboxylic acid vapors. Sensors Actuators B Chem 206:74–83

    Article  CAS  Google Scholar 

  39. Balaji T, Sasidharan M, Matsunaga H (2005) Optical sensor for the visual detection of mercury using mesoporous silica anchoring porphyrin moiety. Analyst 130:1162–1167

    Article  CAS  Google Scholar 

  40. Richardson TH, Dooling CM, Jones LT, Brook RA (2005) Development and optimization of porphyrin gas sensing LB films. Adv Colloid Interf Sci 116:81–96

    Article  CAS  Google Scholar 

  41. Posch HE, Wolfbeis OS (1988) Optical sensors, 13: fibre-optic humidity sensor based on fluorescence quenching. Sensors Actuators 15:77–83

    Article  CAS  Google Scholar 

  42. Cano M, Castillero P, Roales J, Pedrosa JM, Brittle S, Richardson T, González-Elipe AR, Barranco A (2010) A transparent TMPyP/TiO2 composite thin film as an HCl sensitive optochemical gas sensor. Sensors Actuators B Chem 150:764–769

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (51102178) and National Key Technology Support Program (2015BAE01B03), Innovation Fund for Technology of China (14C26211200298) and Innovation Fund for Technology of Tianjin (14ZXCXGX00776).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weimin Kang or Bowen Cheng.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

ESM 1

(DOCX 3.31 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Kang, W., Cheng, B. et al. Sensitive and fast optical HCl gas sensor using a nanoporous fiber membrane consisting of poly(lactic acid) doped with tetraphenylporphyrin. Microchim Acta 183, 1713–1720 (2016). https://doi.org/10.1007/s00604-016-1801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1801-z

Keywords

Navigation