Skip to main content

Advertisement

Log in

Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) were prepared from citric acid and urea, and their fluorescence was found to be quenched by hypochlorite and peroxynitrite. Microwave based synthesis gives CDs with excitation/emission wavelength-dependent quantum yields (8 % at 400/520 nm; 10 % at 360/451 nm; 12 % at 350/420 nm). Quenching of fluorescence depends on pH values, and response is most selective and sensitive to hypochlorite at pH 4, and to peroxynitrite at pH 9. The lower detection limits are 0.5 and 1.5 μM, respectively. The method was successfully applied to quantify hypochlorite and peroxynitrite in standard solutions and in spiked dilute serum samples.

Fluorescence quenching probes based in carbon dots nanoparticles prepared from citric acid and urea were developed for the quantification of hypochlorite at pH 4 and peroxynitrite at pH 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737. doi:10.1021/ja040082h

    Article  CAS  Google Scholar 

  2. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta 183:519–542. doi:10.1007/s00604-015-1705-3

  3. Yang Z, Li Z, Xu M, Ma Y, Zhang J, Su Y, Gao F, Wei H, Zhang L (2013) Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett 5(4):247–259. doi:10.1007/BF03353756

    Article  Google Scholar 

  4. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381. doi:10.1039/C4CS00269E

    Article  CAS  Google Scholar 

  5. Ma N, Jiang W, Li T, Zhang Z, Qi H, Yang M (2014) Fluorescence aggregation assay for the protein biomarker mucin 1 using carbon dot-labeled antibodies and aptamers. Microchim Acta 182(1–2):443–447. doi:10.1007/s00604-014-1386-3

    Google Scholar 

  6. Kang W, Ding Y, Zhou H, Liao Q, Yang X, Yang Y, Jiang J, Yang M (2014) Monitoring the activity and inhibition of alkaline phosphatase via quenching and restoration of the fluorescence of carbon dots. Microchim Acta 182(5–6):1161–1167. doi:10.1007/s00604-014-1439-7

    Google Scholar 

  7. Hu Q, Paau MC, Zhang Y, Chan W, Gong X, Zhang L, Choi MM (2013) Capillary electrophoretic study of amine/carboxylic acid-functionalized carbon nanodots. J Chromatogr A 1304:234–240. doi:10.1016/j.chroma.2013.07.035

    Article  CAS  Google Scholar 

  8. Du F, Zeng F, Ming Y, Wu S (2013) Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Microchim Acta 180(5–6):453–460. doi:10.1007/s00604-013-0954-2

    Article  CAS  Google Scholar 

  9. Salinas-Castillo A, Ariza-Avidad M, Pritz C, Camprubi-Robles M, Fernandez B, Ruedas-Rama MJ, Megia-Fernandez A, Lapresta-Fernandez A, Santoyo-Gonzalez F, Schrott-Fischer A, Capitan-Vallvey LF (2013) Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun 49(11):1103–1105. doi:10.1039/c2cc36450f

    Article  CAS  Google Scholar 

  10. Hou X, Zeng F, Du F, Wu S (2013) Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells. Nanotechnology 24(33):335502. doi:10.1088/0957-4484/24/33/335502

    Article  Google Scholar 

  11. Yu C, Wu Y, Zeng F, Wu S (2013) A fluorescent ratiometric nanosensor for detecting NO in aqueous media and imaging exogenous and endogenous NO in live cells. J Mater Chem B 1(33):4152. doi:10.1039/c3tb20686f

    Article  CAS  Google Scholar 

  12. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48(64):7955–7957. doi:10.1039/c2cc33869f

    Article  CAS  Google Scholar 

  13. Milosavljevic V, Moulick A, Kopel P, Adam V, Kizek R (2014) Microwave preparation of carbon quantum dots with different surface modification. J Metallomics Nanotechnol 3:16–22

    Google Scholar 

  14. Wang Q, Zhang C, Shen G, Liu H, Fu H, Cui D (2014) Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J Nanobiotechnol 12(1):58. doi:10.1186/s12951-014-0058-0

    Article  Google Scholar 

  15. Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S (2015) Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83:173–179. doi:10.1016/j.carbon.2014.11.032

    Article  CAS  Google Scholar 

  16. He L, Wang T, An J, Li X, Zhang L, Li L, Li G, Wu X, Su Z, Wang C (2014) Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging. CrystEngComm 16(16):3259–3263. doi:10.1039/C3CE42506A

    Article  CAS  Google Scholar 

  17. Qu S, Chen H, Zheng X, Cao J, Liu X (2013) Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities. Nanoscale 5(12):5514–5518. doi:10.1039/C3NR00619K

    Article  CAS  Google Scholar 

  18. Qu S, Wang X, Lu Q, Liu X, Wang L (2012) A biocompatible fluorescent ink based on Water-soluble luminescent carbon nanodots. Angew Chem Int Ed 51(49):12215–12218. doi:10.1002/anie.201206791

    Article  CAS  Google Scholar 

  19. Xu M, He G, Li Z, He F, Gao F, Su Y, Zhang L, Yang Z, Zhang Y (2014) A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale 6(17):10307–10315. doi:10.1039/C4NR02792B

    Article  CAS  Google Scholar 

  20. Stefanakis D, Philippidis A, Sygellou L, Filippidis G, Ghanotakis D, Anglos D (2014) Synthesis of fluorescent carbon dots by a microwave heating process: structural characterization and cell imaging applications. J Nanoparticle Res 16(10):1–10. doi:10.1007/s11051-014-2646-1

    Google Scholar 

  21. Dey S, Chithaiah P, Belawadi S, Biswas K, Rao CNR (2014) New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content. J Mater Res 29(03):383–391. doi:10.1557/jmr.2013.295

    Article  CAS  Google Scholar 

  22. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi:10.1016/j.biocel.2006.07.001

    Article  CAS  Google Scholar 

  23. Bergendi L, Beneš L, Ďuračková Z, Ferenčik M (1999) Chemistry, physiology and pathology of free radicals. Life Sci 65(18–19):1865–1874. doi:10.1016/S0024-3205(99)00439-7

    Article  CAS  Google Scholar 

  24. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286(3):R431–R444. doi:10.1152/ajpregu.00361.2003

    Article  CAS  Google Scholar 

  25. Borgmann S (2009) Electrochemical quantification of reactive oxygen and nitrogen: challenges and opportunities. Anal Bioanal Chem 394(1):95–105. doi:10.1007/s00216-009-2692-1

    Article  CAS  Google Scholar 

  26. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ 2nd, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6. doi:10.1016/j.freeradbiomed.2011.09.030

    Article  CAS  Google Scholar 

  27. Schäferling M, Grögel DBM, Schreml S (2011) Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta 174(1–2):1–18. doi:10.1007/s00604-011-0606-3

    Article  Google Scholar 

  28. Uusitalo LM, Hempel N (2012) Recent advances in Intracellular and In vivo ROS Sensing: focus on nanoparticle and nanotube applications. Int J Mol Sci 13(9):10660–10679. doi:10.3390/ijms130910660

    Article  CAS  Google Scholar 

  29. Adegoke O, Forbes PB (2015) Challenges and advances in quantum dot fluorescent probes to detect reactive oxygen and nitrogen species: a review. Anal Chim Acta 862:1–13. doi:10.1016/j.aca.2014.08.036

    Article  CAS  Google Scholar 

  30. Shan X, Chai L, Ma J, Qian Z, Chen J, Feng H (2014) B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 139(10):2322–2325. doi:10.1039/c3an02222f

    Article  CAS  Google Scholar 

  31. Song Y, Zhu S, Xiang S, Zhao X, Zhang J, Zhang H, Fu Y, Yang B (2014) Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 6(9):4676–4682. doi:10.1039/c4nr00029c

    Article  CAS  Google Scholar 

  32. Wu G, Zeng F, Yu C, Wu S, Li W (2014) A ratiometric fluorescent nanoprobe for H2O2 sensing and in vivo detection of drug-induced oxidative damage to the digestive system. J Mater Chem B 2(48):8528–8537. doi:10.1039/C4TB01432D

    Article  CAS  Google Scholar 

  33. Du F, Min Y, Zeng F, Yu C, Wu S (2014) A targeted and FRET-based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells. Small 10(5):964–972. doi:10.1002/smll.201302036

    Article  CAS  Google Scholar 

  34. Yeh TY, Wang CI, Chang HT (2013) Photoluminescent C-dots@RGO for sensitive detection of hydrogen peroxide and glucose. Talanta 115:718–723. doi:10.1016/j.talanta.2013.06.035

    Article  CAS  Google Scholar 

  35. Simões EFC, Esteves da Silva JCG, Leitão JMM (2015) Peroxynitrite and nitric oxide fluorescence sensing by ethylenediamine doped carbon dots. Sensors Actuators B Chem 220:1043–1049. doi:10.1016/j.snb.2015.06.072

    Article  Google Scholar 

  36. Simoes EF, da Silva JC, Leitao JM (2014) Carbon dots from tryptophan doped glucose for peroxynitrite sensing. Anal Chim Acta 852:174–180. doi:10.1016/j.aca.2014.08.050

    Article  CAS  Google Scholar 

  37. Wang D, Xu H, Zheng B, Li Y, Liu M, Du J, Xiao D (2015) N-doped carbon dots with high sensitivity and selectivity for hypochlorous acid detection and its application in water. Anal Methods 7(12):5311–5317. doi:10.1039/C5AY00944H

    Article  CAS  Google Scholar 

  38. Huang Z, Lin F, Hu M, Li C, Xu T, Chen C, Guo X (2014) Carbon dots with tunable emission, controllable size and their application for sensing hypochlorous acid. J Lumin 151:100–105. doi:10.1016/j.jlumin.2014.02.013

    Article  CAS  Google Scholar 

  39. Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, Chen Q, Li H, Tang H, Zhang Y, Yao S (2013) Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138(21):6551–6557. doi:10.1039/c3an01003a

    Article  CAS  Google Scholar 

  40. Gao X, Ding C, Zhu A, Tian Y (2014) Carbon-dot-based ratiometric fluorescent probe for imaging and biosensing of superoxide anion in live cells. Anal Chem 86(14):7071–7078. doi:10.1021/ac501499y

    Article  CAS  Google Scholar 

  41. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York, pp. 54–55

    Book  Google Scholar 

  42. Ding H, Yu S-B, Wei J-S, Xiong H-M (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1):484–491. doi:10.1021/acsnano.5b05406

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A PhD grant SFRH/BD/81074/2011 to Eliana Simões and financial support, project PTDC/QEQQAN/5955/2014, from Fundação para a Ciência e Tecnologia (FCT, Lisbon) are acknowledged. The use of FTIR from UCQFarma, Pharmacy Faculty of the University of Coimbra and the TEM analyses from Nanomaterials and Micromanufacturing group of Centre for Mechanical Engineering of the University of Coimbra (CEMUC) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. M. Leitão.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 1.79 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simões, E.F.C., Leitão, J.M.M. & da Silva, J.C.G.E. Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 183, 1769–1777 (2016). https://doi.org/10.1007/s00604-016-1807-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1807-6

Keywords

Navigation