Skip to main content
Log in

A glassy carbon electrode modified with a nickel(II) norcorrole complex and carbon nanotubes for simultaneous or individual determination of ascorbic acid, dopamine, and uric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on the synthesis of a hybrid material consisting of the porphyrinoid metal complex nickel(II) norcorrole that was noncovalently bound to carbon nanotubes (CNT-NiNC). The hybrid was characterized by UV–vis, FTIR spectroscopy, and thermogravimetric analysis. The CNT-NiNC hybrid possesses high catalytic activity and selectivity toward the oxidation of ascorbic acid, dopamine, and uric acid. It was used to modify a glassy carbon electrode which then is shown to enable simultaneous or individual determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) at pH 6.5 and typical working potentials of −70, 200 and 380 mV (vs. SCE). The detection limits (at an SNR of 3) are 2.0 μM for AA, 0.1 μM for DA, and 0.4 μM for UA.

Dimesityl-substituted nickel(II) norcorrole was used to hybridize with carbon nanotubes. The hybrid possesses high electrocatalytic activity toward the oxidation of ascorbic acid, dopamine, and uric acid. The hybrid was applied to simultaneous determination of ascorbic acid, dopamine, and uric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Misra R, Chandrashekar TK (2008) Structural diversity in expanded porphyrins. Acc Chem Res 41:265–279

    Article  CAS  Google Scholar 

  2. Wicht R, Bahnmueller S, Brandhorst K, Bröring M (2016) Cationic nickel porphyrinoids with unexpected reactivity. Chem Sci 7:583–588

    Article  CAS  Google Scholar 

  3. Shetti VS, Prabhu UR, Ravikanth M (2010) Synthesis and studies of Thiacorroles. J Org Chem 75:4172–4182

    Article  CAS  Google Scholar 

  4. Aviv I, Gross Z (2007) Corrole-based applications. Chem Commun 20:1987–1999

    Article  Google Scholar 

  5. Catrinescu MM, Chan W, Mahammed A, Gross Z, Levin LA (2012) Superoxide signaling and cell death in retinal ganglion cell axotomy: effects of metallocorroles. Exp Eye Res 97:31–35

    Article  CAS  Google Scholar 

  6. You L, Shen H, Shi L, Shang G, Li H, Wang H, Ji L (2010) Photophysical properties of the corrole photosensitizers. Sci China Phys Mech 53:1491–1496

    Article  CAS  Google Scholar 

  7. Kruk M, Ngo TH, Savva V, Starukhin A, Dehaen W, Maes W (2012) Solvent- dependent deprotonation of meso-pyrimidinylcorroles: absorption and fluorescence studies. J Phys Chem A 116:10704–10711

    Article  CAS  Google Scholar 

  8. Ivanova YB, Savva V, Marmardashvili NZ, Starukhin A, Ngo TH, Dehaen W, Maes W, Kruk M (2012) Corrole NH tautomers: spectral features and individual protonation. J Phys Chem A 116:10683–10694

    Article  CAS  Google Scholar 

  9. Oort BV, Tangen E, Ghosh (2004) A electronic structure of transition metal-isocorrole complexes: a first quantum chemical study. Eur J Inorg Chem 2004:2442–2445

    Article  Google Scholar 

  10. Kerber WD, Goldberg DP (2006) High-valent transition metal corrolazines. J Inorg Biochem 100:838–857

    Article  CAS  Google Scholar 

  11. Bröring M, Köhler S, Kleeberg C (2008) Norcorrole: observation of the smallest porphyrin variant with a N4 core. Angew Chem Int Ed 47:5658–5660

    Article  Google Scholar 

  12. Ito T, Hayashi Y, Shimizu S, Shin JY, Kobayashi N, Shinokubo H (2012) Gram-scale synthesis of nickel(II) norcorrole: the smallest antiaromatic porphyrinoid. Angew Chem Int Ed 51:8542–8545

    Article  CAS  Google Scholar 

  13. Fukuoka T, Uchida K, Sung YM, Shin JY, Ishida S, Lim JM, Hiroto S, Furukawa K, Kim D, Iwamoto T, Shinokubo H (2014) Near-IR absorbing nickel(II) porphyrinoids prepared by regioselective insertion of silylenes into antiaromatic nickel(II) norcorrole. Angew Chem 126:1532–1535

    Article  Google Scholar 

  14. Nozawa R, Yamamoto K, Shin JY, Hiroto S, Shinokubo H (2015) Regioselective nucleophilic functionalization of antiaromatic nickel(II) norcorroles. Angew Chem 127:8574–8577

    Article  Google Scholar 

  15. Shin JY, Yamada T, Yoshikawa H, Awaga K, Shinokubo H (2014) An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries. Angew Chem 126:3160–3165

    Article  Google Scholar 

  16. Inagaki M, Kaneko K, Nishizawa T (2004) Nanocarbons-recent research in Japan. Carbon 42:1401–1417

    Article  CAS  Google Scholar 

  17. Yang Y, Chen S, Xue Q, Biris A, Zhao W (2005) Electron transfer chemistry of octadecylamine-functionalized single-walled carbon nanotubes. Electrochim Acta 50:3061–3067

    Article  CAS  Google Scholar 

  18. Yin Y, Lu Y, Wu P, Cai C (2005) Direct electrochemistry of redox proteins and enzymes promoted by carbon nanotubes. Sensors 5:220–234

    Article  CAS  Google Scholar 

  19. Henning T, Salama F (1998) Carbon in the universe. Science 282:2204–2210

    Article  CAS  Google Scholar 

  20. Rushi A, Datta K, Ghosh P, Mulchandani A, ShirsatIron MD (2013) Iron tetraphenyl porphyrin functionalized single wall carbon nanotubes for the detection of benzene. Mater Lett 96:38–41

    Article  CAS  Google Scholar 

  21. Lu XQ, Quan YL, Xue ZH, Wu BW, Qi HT, Liu D (2011) Determination of explosives based on novel type of sensor using porphyrin functionalized carbon nanotubes. Colloids Surf B: 88:396–401

  22. Wang ZJ, Lei HT, Cao R, Zhang MN (2015) Cobalt corrole on carbon nanotube as a synergistic catalyst for oxygen reduction reaction in acid media. Electrochim Acta 171:81–88

    Article  CAS  Google Scholar 

  23. Liu B, Li XF, Stępień M, Chmielewski PJ (2015) Towards norcorrin: hydrogenation chemistry and the heterodimerization of nickel(II) norcorrole. Chem Eur J 21:7790–7797

    Article  CAS  Google Scholar 

  24. Umeyama T, Mihara J, Hayashi H, Kadota N, Chukharev V, Tkachenko NV (2011) Effects of fullerene encapsulation on structure and photophysical properties of porphyrin-linked single-walled carbon nanotubes. Chem Commun 47:11781–11783

    Article  CAS  Google Scholar 

  25. He L, Zhu YZ, Zheng JY, Ma YF, Chen YS (2010) Meso-meso linked diporphyrin functionalized single-walled carbon nanotubes. J Photochem Photobiol A Chem 216:15–23

    Article  CAS  Google Scholar 

  26. Carla C, Campidelli S, Sooamdar C, Marcaccio M, Marcolongo G, Meneghetti M, Paolucci D, Ehli C (2007) Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns. J Am Chem Soc 129:3938–3945

    Article  Google Scholar 

  27. Feng Q, Du Y, Zhang C, Zheng Z, Hu F, Wang Z, Wang C (2013) Synthesis of the multi-walled carbon nanotubes-COOH/graphene/gold nanoparticles nanocomposite for simple determination of Bilirubin in human blood serum. Sens Actuators B 185:337–344

    Article  CAS  Google Scholar 

  28. Lewandowska K, Barszcz B, Wolak J, Graja A, Grzybowski M, Gryko DT (2013) Vibrational properties of new corroleefullerene dyad and its components. Dyes Pigments 96:249–255

    Article  CAS  Google Scholar 

  29. Bursaa B, Wróbel D, Lewandowska K, Grajab A, Grzybowski M, Grykoc DT (2013) Spectral studies of molecular orientation in corrole-fullerene thin films. Synth Met 176:18–25

    Article  Google Scholar 

  30. Zhao D, Fan D, Wang J (2015) Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 182:1345–1352

    Article  CAS  Google Scholar 

  31. Rafati AA, Afraz A, Hajian A (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999–2008

    Article  CAS  Google Scholar 

  32. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  33. Qi SP, Zhao B, Tang HQ (2015) Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim Acta 161:395–402

    Article  CAS  Google Scholar 

  34. Wang Y, Xiao Y (2012) Glassy carbon electrode modified with poly(dibromofluorescein) for the selective determination of dopamine and uric acid in the presence of ascorbic acid. Microchim Acta 178:123–130

    Article  CAS  Google Scholar 

  35. Tu XM, Xie QJ, Jiang SY, Yao SZ (2007) Electrochemical quartz crystal impedance study on the overoxidation of polypyrrole–carbon nanotubes composite film for amperometric detection of dopamine. Biosens Bioelectron 22:2819–2826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by National Natural Science Foundation of China (Nos. 21471052, 21375036, 21371054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keqin Deng or Xiaofang Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, K., Li, X. & Huang, H. A glassy carbon electrode modified with a nickel(II) norcorrole complex and carbon nanotubes for simultaneous or individual determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183, 2139–2145 (2016). https://doi.org/10.1007/s00604-016-1843-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1843-2

Keywords

Navigation