Skip to main content
Log in

Spectrophotometric determination of mercury(II) ions based on their stimulation effect on the peroxidase-like activity of molybdenum disulfide nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a colorimetric method for the determination of Hg(II) ions by exploiting the peroxidase-lile activity of few-layered MoS2 nanosheets (MoS2-NSs). These were prepared by sonication-induced exfoliation of bulk MoS2 crystals in aqueous surfactant solution. The MoS2-NSs were found to acts as a peroxidase mimic that is capable of oxidizing the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) to give a blue product with an absorption maximum at 652 nm. The addition of Hg(II) strongly accelerates the kinetics of this reaction. It is shown that the enzyme mimic possesses a high affinity for TMB and a lower pseudo-Michaelis-Menten constant. The stimulating effect of Hg(II) is seriously influenced by the change of surface charge. The use of nanosheets covered with (negatively charged) polystyrene sulfonate results in a decrease in the formation of blue dye, while those covered with (cationic) poly(diallyldimethyl ammonium) ions cause a small increase. Under optimal conditions, the peroxidase-like activity of MoS2-NSs is affected by Hg(II) in the 2.0 to 200 μM concentration range. The method has a detection limit (LOD) of 0.5 μM which is much below the allowed level in cosmetics (1 ppm; ca. 5 μM). The method display excellent sensitivity, selectivity and stability. It was applied to the determination of total mercury in cosmetic samples, and results compared well with results obtained by ICP-AES.

A spectrophotometric assay for mercury - (II) determination is reported that is based on Hg2+-stimulation effect on the 3,3′,5,5′-tetramethylbenzidine (TMB)-H2O2 reaction system catalyzed by MoS2 nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang J (2005) Nanomaterial-based electrochemical biosenss. Analyst 130:421–426

    Article  CAS  Google Scholar 

  2. Josephy JPD, Eling TE, Mason RP (1983) Co-oxidation of benzidine by prostaglandin synthase and comparison with the action of horseradish peroxidase. J Biol Chem 258:5561–5569

    CAS  Google Scholar 

  3. Kuwabara J, Stern CL, Mirkin CA (2007) A coordination chemistry approach to a multieffect enzyme mimic. J Am Chem Soc 129:10074–10075

    Article  CAS  Google Scholar 

  4. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  Google Scholar 

  5. Bhakta SA, Evans E, Benavidez TW, Garcia CD (2015) Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 872:7–25

    Article  CAS  Google Scholar 

  6. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  7. Ellis WC, Tran CT, Denardo MA, Fischer A, Ryabov AD, Collins TJ (2009) Design of more powerful iron-TAML peroxidase enzyme mimics. J Am Chem Soc 131:18052–18053

    Article  CAS  Google Scholar 

  8. Su L, Feng J, Zhou X, Ren C, Li H, Chen X (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Aanl Chem 84:5753–5758

    Article  CAS  Google Scholar 

  9. Liang L, Ge S, Li L, Liu F, Yu J (2015) Microfluidic paper-based multiplex colorimetric immunodevice based on the catalytic effect of Pd/Fe3O4@C peroxidase mimetics on multiple chromogenic reactions. Anal Chim Acta 862:70–76

    Article  CAS  Google Scholar 

  10. Jiang H, Chen Z, Cao H, Huang Y (2012) Peroxidase-like activity of chitosan stabilized silver nanoparticles f visual and colorimetric detection of glucose. Analyst 137:5560–5564

    Article  CAS  Google Scholar 

  11. Chen Y, Yao L, Deng Y, Pan D, Ogabiela E, Cao J, Adeloju SB, Chen W (2015) Rapid and ultrasensitive colorimetric detection of mercury (II) by chemically initiated aggregation of gold nanoparticles. Microchim Acta 182:2147–2154

    Article  CAS  Google Scholar 

  12. Nirala NR, Abraham S, Kumar V, Kunar V, Bansal A, Srivastava A, Saxena PS (2015) Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sensors Actuators B Chem 218:42–50

    Article  CAS  Google Scholar 

  13. Li BL, Luo HQ, Lei JL, Li NB (2014) Hemin-functionalized MoS2 nanosheets: enhanced peroxidase-like catalytic activity with a steady state in aqueous solution. RSC Adv 4:24256–24262

    Article  CAS  Google Scholar 

  14. Guo X, Wang Y, Wu F, Ni Y, Kokot S (2015) A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst 140:1119–1126

    Article  CAS  Google Scholar 

  15. Lin T, Zhong L, Guo L, Fu F, Chen G (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 6:11856–11862

    Article  CAS  Google Scholar 

  16. Zhao K, Gu W, Zheng S, Zhang C, Xian Y (2015) SDS–MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta 141:47–52

    Article  CAS  Google Scholar 

  17. Holmes P, James K. A. F, Levy L. S (2009) Is low-level environmental mercury exposure of concern to human health? Sci Total Environ 408:171–182.

  18. D’Ame JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils: a review. J Environ Qual 34:1707–1745

    Article  Google Scholar 

  19. Yu L, Yan X (2004) Flow injection on-line sorption preconcentration coupled with cold vap atomic fluorescence spectrometry and on-line oxidative elution for the determination of trace mercury in water samples. At Spectrosc 25:145–153

    CAS  Google Scholar 

  20. Yan F, Kong D, Luo Y, Ye Q, He J, Guo X, Chen L (2016) Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Microchim Acta. doi:10.1007/s00604-016-1788-5

    Google Scholar 

  21. Gao R, Ying YL, Yan BY, Iqbal P, Preece JA, Wu X (2016) Ultrasensitive determination of mercury (II) using glass nanopores functionalized with macrocyclic dioxotetraamines. Microchim Acta 183:491–495

    Article  CAS  Google Scholar 

  22. Xu S, Yang H, Zhao K, Li J, Mei L, Xie Y, Deng A (2015) Preparation of orange-red fluorescent gold nanoclusters using denatured casein as a reductant and stabilizing agent, and their application to imaging of HeLa cells and for the quantitation of mercury (II). Microchim Acta 182:2577–2584

    Article  CAS  Google Scholar 

  23. Wang ZX, Guo YX, Ding SN (2015) Fluorometric determination of cadmium (II) and mercury (II) using nanoclusters consisting of a gold-nickel alloy. Microchim Acta182: 13–14.

  24. Wu G, He S, Peng H, Deng H, Liu A, Lin X, Xia X, Chen W (2014) Citrate-capped platinum nanoparticle as a smart probe f ultrasensitive mercury sensing. Aanl Chem 86:10955–10960

    Article  CAS  Google Scholar 

  25. Tseng CW, Chang HY, Chang JY, Huang CC (2012) Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 4:6823–6830

    Article  CAS  Google Scholar 

  26. Long YJ, Fang Y, Liu Y, Zheng JJ, Tang J, Huang C. Z (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47: 11939–11941.

  27. Zhu R, Zhou Y, Wang X, Liang L, Long Y, Wang Q, Zhang H, Huang X, Zheng H (2013) Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters. Talanta 117:127–132

    Article  CAS  Google Scholar 

  28. Wang G, Fu X, Cao L, He C, Li Z, Zhang C (2014) Mercury(II)-stimulated oxidase mimetic activity of silver nanoparticles as a sensitive and selective mercury(II) sensor. RSC Adv 4:5867–5872

    Article  CAS  Google Scholar 

  29. Huang X, Hao Y, Wu H, Guo Q, Guo L, Wang J, Zhong L, Lin T, Fu F, Chen G (2014) Magnetic beads based colorimetric detection of mercuric ion. Sensors Actuators B Chem 191:600–604

    Article  CAS  Google Scholar 

  30. Li Y, Wang H, Xie L, iang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  CAS  Google Scholar 

  31. Zhang X, Tang H, Xue M, Li C (2014) Facile synthesis and characterization of ultrathin MoS2 nanosheets. Mater Lett 130:83–86

    Article  CAS  Google Scholar 

  32. Lei J, Jiang Z, Lu X, Nie G, Wang C (2015) Synthesis of few-layer MoS2 nanosheets-wrapped polyaniline hierarchical nanostructures for enhanced electrochemical capacitance performance. Electrochim Acta 176:149–155

    Article  CAS  Google Scholar 

  33. Chen Z, Yin JJ, Zhou YT, Song L, Song M, Liu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6:4001–4012

    Article  CAS  Google Scholar 

  34. Xie J, Cao H, Jiang H, Chen Y, Shi W, Zheng H, Huang Y (2013) Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Anal Chim Acta 796:92–100

    Article  CAS  Google Scholar 

  35. Wang Q, Yang Z, Zhang X, Xiao X, Chang C. K, Xu B (2007) A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew Chem Int Ed 46: 4285–4289.

  36. Jiang X, Sun C, Guo Y, Nie G, Xu L (2015) Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosens Bioelectron 64:165–170

    Article  CAS  Google Scholar 

  37. Lukowski M. A, Daniel A. S, Meng F, Fticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277

    Article  Google Scholar 

  38. Liu Q, Yang Y, Li H, Zhu R, Shao Q, Yang S, Xu J (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: promising peroxidase mimetics for H2O2 and glucose detection. Biosens Bioelectron 64:147–153

    Article  CAS  Google Scholar 

  39. Ge S, Liu W, Liu H, Liu F, Yu J, Yan M, Huang J (2015) Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods. Biosens Bioelectron 71:456–462

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Post-Doctoral Science Foundation of China (No. 2013 M542393), the Fundamental Research Fund for the Central Universities (No. lzujbky-2014-69) and Applied Basic Research Project of Qinghai Province (No.2015-ZJ-783).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weichun Ye or Haixia Zhang.

Electronic Supplementary Material

ESM 1

(DOC 3.45 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Yu, J., Ye, W. et al. Spectrophotometric determination of mercury(II) ions based on their stimulation effect on the peroxidase-like activity of molybdenum disulfide nanosheets. Microchim Acta 183, 2481–2489 (2016). https://doi.org/10.1007/s00604-016-1886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1886-4

Keywords

Navigation