Skip to main content
Log in

Red emitting and highly stable carbon dots with dual response to pH values and ferric ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe strongly red-emitting carbon dots (CDs) which were obtained via microwave synthesis using phenylenediamine as the carbon source. The structural and optical properties of the resultant CDs are studied in some detail. The CDs possess (a) longwave emission (peaking at 620 nm under 470 nm excitation), (b) a quantum yield of ~15%, (c) a size of typically 3.8 nm; and (d) good photostability. The CDs have a pH-dependet response that covers the pH 5 to 10 range, and their fluorescence is quenched by ferric ions. The CDs can detect ferric ions in aqueous samples in the 0 to 30 μM concentration range with a lower detection limit of 15 nM. The CDs were also used to image pH values and ferric ions in E. coli bacteria.

The red-emitting carbon dots with high stability are synthesized which show dual response to pH-values and ferric ions in aqueous solution and biological media simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou D, Liu M, Lin M, XY B, Luo XT, Zhang H, Yang B (2014) Hydrazine-mediated construction of nanocrystal self-assembly materials. ACS Nano 8:10569–10581

    Article  CAS  Google Scholar 

  2. Wang CX, Wang Y, Xu L, Shi XD, Li XW, XW X, Sun HC, Yang B, Lin Q (2013) A galvanic replacement route to prepare strongly fluorescent and highly stable gold Nanodots for cellular imaging. Small 9:413–420

    Article  CAS  Google Scholar 

  3. Jiang YN, Yang XD, Ma C, Wang CX, Li H, Dong FX, Zhai XM, Yu K, Lin Q, Yang B (2010) Photoluminescent smart hydrogels with reversible and linear Thermoresponses. Small 6:2673–2677

    Article  CAS  Google Scholar 

  4. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914

    Article  CAS  Google Scholar 

  5. Wang CX, Xu ZZ, Lin HH, Huang YJ, Zhang C (2015) Large scale synthesis of highly stable fluorescent carbon dots using silica spheres as carriers for targeted bioimaging of cancer cells. Part Part Syst Charact 32:944–951

    Article  CAS  Google Scholar 

  6. Miao P, Han K, Tang YG, Wang BD, Lin T, Cheng WB (2015) Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nano 7:1586–1595

    CAS  Google Scholar 

  7. Song YB, Zhu SJ, Yang B (2014) Bioimaging based on fluorescent carbon dots. RSC Adv 4:27184–27200

    Article  CAS  Google Scholar 

  8. Hong GS, Diao S, Antaris AL, Dai HJ (2015) Carbon nanomaterials for biological imaging and Nanomedicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  Google Scholar 

  9. Liu YS, Gao B, Qiao ZQ, YJ H, Zheng WF, Zhang L, Zhou Y, Ji GB, Yang GC (2015) Gram-scale synthesis of graphene quantum dots from single carbon atoms growth via energetic material deflagration. Chem Mater 27:4319–4327

    Article  CAS  Google Scholar 

  10. Zhao SJ, Lan MH, Zhu XY, Xue HT, Ng TW, Meng XM, Lee CS, Wang PF, Zhang WJ (2015) Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7:17054–17060

    Article  CAS  Google Scholar 

  11. Xu ZZ, Wang CX, Jiang KL, Lin HH, Huang YJ, Zhang C (2015) Microwave-assisted rapid synthesis of amphibious yellow fluorescent carbon dots as a colorimetric Nanosensor for Cr(VI). Part Part Syst Charact 32:1058–1062

    Article  CAS  Google Scholar 

  12. He H, Wang XJ, Feng ZZ, Cheng TT, Sun X, Sun YW, Xia YQ, Wang SJ, Wang JY, Zhang XD (2015) Rapid microwave-assisted synthesis of ultra-bright fluorescent carbon dots for live cell staining, cell-specific targeting and in vivo imaging. J Mater Chem B 3:4786–4789

    Article  CAS  Google Scholar 

  13. Guo ZQ, Park S, Yoon J, Shin I (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 43:16–29

    Article  Google Scholar 

  14. Wang CX, Lin HH, ZZ X, Huang YJ, Humphrey MG, Zhang C (2016) Tunable carbon-dot-based dual-emission fluorescent Nanohybrids for Ratiometric optical thermometry in living cells. ACS Appl Mater Interfaces 8:6621–6628

    Article  CAS  Google Scholar 

  15. Wang CX, Jiang KL, Xu ZZ, Lin HH, Zhang C (2016) Glutathione modified carbon-dots: from aggregation-induced emission enhancement properties to a “turn-on” sensing of temperature/Fe3+ ions in cells. Inorg Chem Front 3:514–522

    Article  CAS  Google Scholar 

  16. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly Photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957

    Article  CAS  Google Scholar 

  17. Lai TT, Zheng EH, Chen LX, Wang XY, Kong LC, You CP, Ruan YM, Weng XX (2013) Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe (III). Nano 5:8015–8021

    CAS  Google Scholar 

  18. Nie H, Li MJ, Li QS, Liang SJ, Tan YY, Sheng L, Shi W, Zhang SXA (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26:3104–3112

    Article  CAS  Google Scholar 

  19. Wang CX, ZZ X, Cheng H, Lin HH, Humphrey MG, Zhang C (2015) A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82:87–95

    Article  CAS  Google Scholar 

  20. Jiang K, Sun S, Zhang L, Lu Y, Wu AG, Cai CZ, Lin HW (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed 54:5360–5363

    Article  CAS  Google Scholar 

  21. Ding H, SB Y, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  CAS  Google Scholar 

  22. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nano 2:1358–1374

    CAS  Google Scholar 

  23. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  24. Kawasaki H, Kosaka Y, Myoujin Y, Narushima T, Yonezawa T, Arakawa R (2011) Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem Commun 47:7740–7742

    Article  CAS  Google Scholar 

  25. Hoz AD, Diaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178

    Article  Google Scholar 

  26. Shen C, Sun YP, Wang J, Lu Y (2014) Facile route to highly photoluminescent carbon nanodots for ions detection, pH sensors and bioimaging. Nano 6:9139–9147

    CAS  Google Scholar 

  27. Wang CX, Jiang KL, Wu Q, JP W, Zhang C (2016) Green synthesis of red-emitting carbon nanodots as a novel “turn-on” nanothermometer in living cells. Chem Eur J 22:14475–14479

    Article  CAS  Google Scholar 

  28. He Y, Zhou YL, Peng F, Wei XP, Su YY, Lu YM, Su S, Gu W, Liao LS, Lee ST (2011) One-pot microwave synthesis of water-dispersible, Ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J Am Chem Soc 133:14192–14195

    Article  CAS  Google Scholar 

  29. Yang QY, Ye ZJ, Zhong ML, Chen B, Chen J, Zeng RJ, Wei L, Li HW, Xiao LH (2016) Self-assembled fluorescent bovine serum albumin Nanoprobes for Ratiometric pH measurement inside living cells. ACS Appl Mater Interfaces 8:9629–9634

    Article  CAS  Google Scholar 

  30. Yang YM, Kong WQ, Li H, Liu J, Yang MM, Huang H, Liu Y, Wang ZY, Wang ZQ, Sham TK, Zhong J, Wang C, Liu Z, Lee ST, Kang ZH (2015) Fluorescent N-doped carbon dots as in vitro and in vivo Nanothermometer. ACS Appl Mater Interfaces 7:27324–27330

    Article  CAS  Google Scholar 

  31. Shi DC, Yan FY, Zheng TC, Wang YY, Zhou XG, Chen L (2015) Low-cost synthesis of carbon nanodots from natural products used as a fluorescent probe for the detection of ferrum (III) ions in lake water. RSC Adv 5:98492–98499

    Article  CAS  Google Scholar 

  32. Li L, Li L, Wang C, Liu K, Zhu R, Qiang H, Lin Y (2015) Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim Acta 182:763–770

    Article  CAS  Google Scholar 

  33. Wang F, Hao Q, Zhang Y, Xu Y, Lei W (2016) Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim Acta 18:273–279

    Article  Google Scholar 

  34. Xia J, Zhuang YT, YL Y, Wang JH (2017) Highly fluorescent carbon polymer dots prepared at room temperature, and their application as a fluorescent probe for determination and intracellular imaging of ferric ion. Microchim Acta 184:1109–1116

    Article  CAS  Google Scholar 

  35. Wang D, Wang L, Dong XY, Shi Z, Jin J (2012) Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon 50:2147–2154

    Article  CAS  Google Scholar 

  36. Xu Q, Pu P, Zhao JG, Dong CB, Gao C, Chen YS, Chen JR, Liu Y, Zhou HJ (2015) Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J Mater Chem A 3:542–546

    Article  CAS  Google Scholar 

  37. Han JS, Zhou ZW, XY B, Zhu SJ, Zhang H, Sun HZ, Yang B (2013) Employing aqueous CdTe quantum dots with diversified surface functionalities to discriminate between heme(Fe(II)) and hemin(Fe(III)). Analyst 138:3402–3408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.51503085 51502115, and 21507139), open project of state key laboratory of supramolecular structure and materials (sklssm201724), and the Fundamental Research Funds for the Central Universities (NO.JUSRP11708).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chan Wang, Yingnan Jiang or Chuanxi Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.82 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, X., Wang, C. et al. Red emitting and highly stable carbon dots with dual response to pH values and ferric ions. Microchim Acta 185, 83 (2018). https://doi.org/10.1007/s00604-017-2544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2544-1

Keywords

Navigation