Skip to main content
Log in

Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the preparation of amino-functionalized carbon dots (NH2-CDs) via a one-step hydrothermal process using silver nitrate and chitosan as the precursors. The NH2-CDs have a fairly consistent size distribution with an average size of 2.8 ± 0.5 nm. This is attributed to the introduction of Ag(I) both as a catalyst and a precipitant. The NH2-CDs are highly crystalline. Their surface carries amino groups and carboxy groups which is confirmed by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Horseradish peroxidase (HRP) was immobilized in the NH2-CDs and then placed on a glassy carbon electrode (GCE). Spectroscopic and electrochemical analyses evidenced the stability and good bioactivity of the immobilized HRP. This reveals that NH2-CD is a desirable matrix for enzyme immobilization. The modified GCE exhibits enhanced electro-catalytic activity towards hydrogen peroxide (H2O2) reduction as compared to that of plain CDs. The effects of pH value and loading on the performances of the modified GCEs were studied. Under optimized conditions, the biosensor has a linear response in the 5 to 590 nM H2O2 concentration range, with a 1.8 nM defection limit (at an S/N ratio of 3). The sensor is stable, reproducible and selective. Finally, the sensor was applied to determine H2O2 in real samples, and satisfactory recoveries were achieved.

Amino-functionalized carbon dots (NH2-CDs) can provide more active sites and a friendly microenvironment for horseradish peroxidase (HRP) immobilization. Thus, a novel sensitive H2O2 biosensor has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Song HY, Ni YN, Kokot S (2013) A glassy carbon electrode modified with poly(anthranilic acid), poly(diphenylamine sulfonate) and CuO nano-particles for the sensitive determination of hydrogen peroxide. Microchim Acta 180:1263–1270. https://doi.org/10.1007/s00604-013-1053-0

    Article  CAS  Google Scholar 

  2. Jia NQ, Lian Q, Wang ZY, Shen HB (2009) A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin incorporated in PEO–PPO–PEO triblock copolymer film. Sensors Actuators B Chem 137:230–234. https://doi.org/10.1016/j.snb.2008.10.011

    Article  Google Scholar 

  3. Li M, Gao H, Wang X, Wang Y, Qi H, Zhang C (2017) A fluorinedoped tin oxide electrode modified with gold nanoparticles for electrochemiluminescent determination of hydrogen peroxide released by living cells. Microchim Acta 184:603–610. https://doi.org/10.1007/s00604-016-2051-9

    Article  CAS  Google Scholar 

  4. Fusco G, Bollella P, Mazzei F, Favero G, Antiochia R, Tortolini C (2016) Catalase-baed modified graphite electrode for hydrogen peroxide detection in different beverages. J Anal Methods Chem 2016:8174913. https://doi.org/10.1155/2016/8174913

    Article  Google Scholar 

  5. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39:235–251. https://doi.org/10.1016/j.enzmictec.2005.10.016

    Article  CAS  Google Scholar 

  6. Castillo J, Gáspár S, Leth S, Niculescu M, Mortari A, Bontidean I, Soukharev V, Dorneanu SA, Ryabov AD, Csöregi E (2004) Biosensors for life quality: design, development and applications. Sensors Actuators B Chem 102:179–194. https://doi.org/10.1016/j.snb.2004.04.084

    Article  CAS  Google Scholar 

  7. Liu YD, Liu XH, Guo ZP, ZG H, Xue ZG, XQ L (2017) Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide in living cells sensitively. Biosens Bioelectron 87:101–107. https://doi.org/10.1016/j.bios.2016.08.015

    Article  CAS  Google Scholar 

  8. Thenmozhi K, Narayanan SS (2017) Horseradish peroxidase and toluidine blue covalently immobilized leak-free sol-gel composite biosensor for hydrogen peroxide. Mater Sci Eng C 70:223–230. https://doi.org/10.1016/j.msec.2016.08.075

    Article  CAS  Google Scholar 

  9. Wu C, Liu Z, Sun HH, Wang X, Xu P (2016) Selective determination of phenols and aromatic amines based on horseradish peroxidase-nanoporous gold co-catalytic strategy. Biosens Bioelectron 79:843–849. https://doi.org/10.1016/j.bios.2016.01.026

    Article  CAS  Google Scholar 

  10. Mao CJ, Chen XB, Niu HL, Song JM, Zhang SY, Cui RJ (2012) A novel enzymatic hydrogen peroxide biosensor based on Ag/C nanocables. Biosens Bioelectron 31:544–547. https://doi.org/10.1016/j.bios.2011.10.001

    Article  CAS  Google Scholar 

  11. Zhao XJ, Mai ZB, Kang XH, Zou XY (2008) Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite. Biosens Bioelectron 23:1032–1038. https://doi.org/10.1016/j.bios.2007.10.012

    Article  CAS  Google Scholar 

  12. XY X, Ray R, YL G, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-wall carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  Google Scholar 

  13. Pumera M, Sánchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sensors Actuators B Chem 123:1195–1205. https://doi.org/10.1016/j.snb.2006.11.016

    Article  CAS  Google Scholar 

  14. Willner I, Baron R, Willner B (2007) Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22:1841–1852. https://doi.org/10.1016/j.bios.2006.09.018

    Article  CAS  Google Scholar 

  15. Bollela P, Fusco G, Tortolini C, Sanzò G, Favero G, Gorton L, Antiochia R (2017) Beyond graphene:electrochemical sensors and biosensors for biomarkers detection. Biosens Bioelectron 89:152–166. https://doi.org/10.1016/j.bios.2016.03.068

    Article  Google Scholar 

  16. Mazzei F, Favero G, Bollella P, Tortolini C, Mannina L (2015) Recent trends in electrochemical nanobiosensors for environmental analysis. Int J Environ Health 7:267–291. https://doi.org/10.1504/IJENVH.2015.073210

    Article  CAS  Google Scholar 

  17. Peng ZL, Han X, Li SH, Al-Youbi AO, Bashammakh AB, El-Shahawi MS, Leblanc RM (2017) Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine. Coord Chem Rev 343:256–277. https://doi.org/10.1016/j.ccr.2017.06.001

    Article  CAS  Google Scholar 

  18. Lim SY, Shen W, Gao ZQCZ (2015) Carbo quantum dots and their applications. Chem Soc Rev 44:362–381. https://doi.org/10.1039/c4cs00269e

    Article  CAS  Google Scholar 

  19. Cao L, Wang X, Meziani MJ, FS L, Wang HF, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319. https://doi.org/10.1021/ja0735271

    Article  CAS  Google Scholar 

  20. Jin HL, Huang HH, He YH, Feng X, Wang S, Dai LM, Wang JC (2015) Graphene quantum dots supported by grapheme nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J Am Chem Soc 137:7588–7591. https://doi.org/10.1021/jacs.5b03799

    Article  CAS  Google Scholar 

  21. Ray SC, Saha A, Jana NR, Sarkar R (2009) J Phys Chem C 113:18546–18551

    Article  CAS  Google Scholar 

  22. Park Y, Yoo J, Lim B, Kwon W, Rhee SW (2016) Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A 4:18546–18551. https://doi.org/10.1039/c6ta04813g

    Google Scholar 

  23. Sun XC, Lei Y (2017) Fluorescent carbon dots and their sensing applications. Trends Anal Chem 89:163–180. https://doi.org/10.1016/j.trac.2017.02.001

    Article  CAS  Google Scholar 

  24. Ding CQ, Zhu AW, Tian Y (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47:20–30. https://doi.org/10.1021/ar400023s

    Article  CAS  Google Scholar 

  25. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744. https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  26. Gowthaman NSK, Sinduja B, Karthikeyan R, Rubini K, John SA (2017) Fabrication of nitrogen-doped carbon dots for screening the purine metabolic disorder in human fluids. Biosens Bioelectron 94:30–38. https://doi.org/10.1016/j.bios.2017.02.034

    Article  CAS  Google Scholar 

  27. Wang YL, Wang ZC, Rui YP, Li MG (2015) Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing. Biosens Bioelectron 64:57–62. https://doi.org/10.1016/j.bios.2014.08.054

    Article  CAS  Google Scholar 

  28. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18. https://doi.org/10.1021/ja206030c

    Article  CAS  Google Scholar 

  29. Yang YH, Cui JH, Zheng MT, CF H, Tan SZ, Xiao Y, Yang Q, Liu YL (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382. https://doi.org/10.1039/c1cc15678k

    Article  CAS  Google Scholar 

  30. Chowdhury D, Gogoi N, Majumdar G (2012) Fluorescent carbon dots obtained from chitosan gel. RSC Adv 2:12156–12159. https://doi.org/10.1039/c1ra21705h

    Article  CAS  Google Scholar 

  31. Mao SX, Long YM, Li WF, YF T, Deng AP (2013) Core-shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications. Biosens Bioelectron 48:258–262. https://doi.org/10.1016/j.bios.2013.04.026

    Article  CAS  Google Scholar 

  32. Wang J, Wang CF, Chen S (2012) Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed 51:9297–9301. https://doi.org/10.1002/anie.201204381

    Article  CAS  Google Scholar 

  33. Wang SF, Chen T, Zhang ZL, Shen XC, ZX L, Pang DW, Wong KY (2005) Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir 21:9260–9266. https://doi.org/10.1021/la050947k

    Article  CAS  Google Scholar 

  34. Adams S, Higgins AM, Jones RAL (2002) Surface-mediated folding and misfolding of proteins at lipid/water interfaces. Langmuir 18:4854–4861. https://doi.org/10.1021/la0112413

    Article  CAS  Google Scholar 

  35. Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905. https://doi.org/10.1016/j.bios.2009.09.004

    Article  CAS  Google Scholar 

  36. Ren XL, Meng XW, Chen D, Tang FQ, Jiao J (2005) Using silver nanoparticle to enhance current response of biosensor. Biosens Bioelectron 21:433–437. https://doi.org/10.1016/j.bios.2004.08.052

    Article  CAS  Google Scholar 

  37. Ko S, Takahashi Y, Fujita H, Tatsuma T, Sakoda A, Komori K (2012) Peroxidase-modified cupstacked carbon nanofiber networks for electrochemical biosensing with adjustable dynamic range. RSC Adv 2:1444–1449. https://doi.org/10.1039/c1ra00649e

    Article  CAS  Google Scholar 

  38. Harbury HA (1957) Oxidation-reduction potentials of horseradish peroxidase. J Biol Chem 225:1009–1024

    CAS  Google Scholar 

  39. Dai HX, Lv WJ, Zuo XW, Zhu Q, Pan CJ, Niu XY, Liu JJ, Chen HL, Chen XG (2017) A novel biosensor based on boronic acid functionalized metal-orgnic frameworks for the determination of hydrogen peroxide released from living cells. Biosens Bioelectron 95:131–137. https://doi.org/10.1016/j.bios.2017.04.021

    Article  CAS  Google Scholar 

  40. Ren QQ, Wu J, Zhang WC, Wang C, Qin X, Liu GC, Li ZX, Yu Y (2017) Real-time in vitro detection of cellular H2O2 under camptothecin stress using horseradish peroxidase, ionic liquid, and carbon nanotube-modified carbon fiber ultramicroelectrode. Sensors Actuators B Chem 245:615–621. https://doi.org/10.1016/j.snb.2017.02.001

    Article  CAS  Google Scholar 

  41. Liu H, Guo K, Duan CY, Chen XJ, Zhu ZF (2016) A novel biosensor based on the direct electrochemistry of horseradish peroxidase immobilized in the three dimensional flower-like Bi2WO6 microspheres. Sci Eng C 64:243–248. https://doi.org/10.1016/j.msec.2016.03.079

    Article  CAS  Google Scholar 

  42. CM Y, Wang L, Li WB, Zhu C, Bao N, HY G (2015) Detection of cellular H2O2 in living cells based on horseradish peroxidase at the interface of Au nanoparticles decorated grapheme oxide. Sensors Actuators B Chem 211:17–24. https://doi.org/10.1016/j.snb.2015.01.064

    Article  Google Scholar 

  43. Song HY, Ni YN, Kokot S (2014) Investigations of an electrochemical platform based on the layered MoS2-graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis. Biosens Bioelectron 56:137–143. https://doi.org/10.1016/j.bios.2014.01.014

    Article  CAS  Google Scholar 

  44. Kaçar C, Dalkiran B, Erden PE, Kiliç E (2014) An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Appl Surf Sci 311:139–146. https://doi.org/10.1016/j.apsusc.2014.05.028

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201207).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumei Long or Weifeng Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhou, X., Long, Y. et al. Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Microchim Acta 185, 114 (2018). https://doi.org/10.1007/s00604-017-2629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2629-x

Keywords

Navigation