Skip to main content
Log in

Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A molecularly imprinted photonic hydrogel (MIPH) is described for the optical determination of L-histidine (L-His). The inverse opal structure of MIPH was obtained by placing silica particles (230 nm) in molecularly imprinted polymer on a glass slide. After being fully etched by hydrofluoric acid, this inverse opal structure brings about a high specific surface and plentiful binding sites for L-His. If L-His is absorbed by the modified MIPH, its average effective refraction coefficient is increased. This causes the Bragg diffraction peak to be red-shifted by about 34 nm as the concentration of L-His increases from 0 to 100 nM. Much smaller diffraction peak shifts are obtained for other amino acids. The detection limit of this method is 10 pM. The response time towards L-His is as short as 60 s. In addition, the sensor can be recovered by treatment with 0.1 M acetic acid/methanol. It was applied to the determination of L-His in drinks sample.

After absorbing L-histidine, the average effective refractive index of this molecularly imprinted photonic hydrogel (MIPH) is increased, and the Bragg diffraction peak is shifted. The shift of the diffraction peak can be used for the detection of L-His

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nan CG, Ping WX, Ping DJ, Qing CH (1999) A study on electrochemistry of histidine and its metabolites based on the diazo coupling reaction. Talanta 49(2):319–330

    Article  CAS  Google Scholar 

  2. Rawat KA, Kailasa SK (2014) Visual detection of arginine, histidine and lysine using quercetin-functionalized gold nanoparticles. Microchim Acta 181(15–16):1917–1929

    Article  CAS  Google Scholar 

  3. Yu M, Chu W, Wu Z (2010) XAFS study of the configuration of l-histidine with Mn 2+, co 2+, Ni 2+, cu 2+, Zn 2+ at pH 6.0. Nucl Inst Methods Phys Res A 619(1):408–410

    Article  CAS  Google Scholar 

  4. Sasmal M, Maiti TK, Bhattacharyya TK (2015) Ultra-low level detection of L-histidine using solution-processed ZnO nanorod on flexible substrate. IEEE Trans Nanobiosci 14(6):634–640

    Article  Google Scholar 

  5. Meng J, Zhang W, Cao C-X, Fan L-Y, Wu J, Wang Q-L (2010) Moving affinity boundary electrophoresis and its selective isolation of histidine in urine. Analyst 135(7):1592–1599

    Article  CAS  Google Scholar 

  6. Wadud S, Or-Rashid MM, Onodera R (2002) Method for determination of histidine in tissues by isocratic high-performance liquid chromatography and its application to the measurement of histidinol dehydrogenase activity in six cattle organs. J Chromatogr B 767(2):369–374

    Article  CAS  Google Scholar 

  7. Zheng X, Yao T, Zhu Y, Shi S (2015) Cu(2+) modulated silver nanoclusters as an on-off-on fluorescence probe for the selective detection of L-histidine. Biosens Bioelectron 66:103–108

    Article  CAS  Google Scholar 

  8. Shamsipur M, Molaabasi F, Shanehsaz M, Moosavi-Movahedi AA (2015) Novel blue-emitting gold nanoclusters confined in human hemoglobin, and their use as fluorescent probes for copper(II) and histidine. Microchim Acta 182(5–6):1131–1141

    Article  CAS  Google Scholar 

  9. Zhu X, Zhao T, Nie Z, Miao Z, Liu Y, Yao S (2016) Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells. Nanoscale 8(4):2205–2211

    Article  CAS  Google Scholar 

  10. Li L-D, Chen Z-B, Zhao H-T, Guo L (2011) Electrochemical real-time detection of l-histidine via self-cleavage of DNAzymes. Biosens Bioelectron 26(5):2781–2785

    Article  CAS  Google Scholar 

  11. Chen Z, Nai J, Ma H, Li Z (2014) Nickel hydroxide nanocrystals-modified glassy carbon electrodes for sensitive l-histidine detection. Electrochim Acta 116:258–262

    Article  CAS  Google Scholar 

  12. Natsume T, Nakayama H, Cs J, Isobe T, Takio K, Mikoshiba K (2000) Combination of biomolecular interaction analysis and mass spectrometric amino acid sequencing. Anal Chem 72(17):4193–4198

    Article  CAS  Google Scholar 

  13. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062

    Article  CAS  Google Scholar 

  14. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  CAS  Google Scholar 

  15. Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed 53(13):3318–3335

    Article  CAS  Google Scholar 

  16. Lee K, Asher SA (2000) Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc 122(39):9534–9537

    Article  CAS  Google Scholar 

  17. Wang J, Cao Y, Feng Y, Yin F, Gao J (2007) Multiresponsive inverse-opal hydrogels. Adv Mater 19(22):3865–3871

    Article  CAS  Google Scholar 

  18. Ye B, Zhao Y, Cheng Y, Li T, Xie Z, Zhao X, Gu Z (2012) Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 4(19):5998–6003

    Article  CAS  Google Scholar 

  19. Xue F, Meng Z, Wang F, Wang Q, Xue M, Xu Z (2014) A 2-D photonic crystal hydrogel for selective sensing of glucose. J Mater Chem 2(25):9559–9565

    Article  CAS  Google Scholar 

  20. Hu X, Li G, Li M, Huang J, Li Y, Gao Y, Zhang Y (2008) Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels. Adv Funct Mater 18(4):575–583

    Article  CAS  Google Scholar 

  21. Wang C, Lim CY, Choi E, Park Y, Park J (2016) Highly sensitive user friendly thrombin detection using emission light guidance from quantum dots-aptamer beacons in 3-dimensional photonic crystal. Sensors Actuators B Chem 223:372–378

    Article  CAS  Google Scholar 

  22. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102(1):1–27

    Article  CAS  Google Scholar 

  23. Wackerlig J, Lieberzeit PA (2015) Molecularly imprinted polymer nanoparticles in chemical sensing – synthesis, characterisation and application. Sensors Actuators B Chem 207:144–157

    Article  CAS  Google Scholar 

  24. Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36(3):609–628

    Article  CAS  Google Scholar 

  25. Schirhagl R (2014) Bioapplications for molecularly imprinted polymers. Anal Chem 86(1):250–261

    Article  CAS  Google Scholar 

  26. Wang H, Yi J, Velado D, Yu Y, Zhou S (2015) Immobilization of carbon dots in molecularly imprinted microgels for optical sensing of glucose at physiological pH. ACS Appl Mater Interfaces 7(29):15735–15745

    Article  CAS  Google Scholar 

  27. Kamra T, Zhou T, Montelius L, Schnadt J, Ye L (2015) Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection. Anal Chem 87(10):5056–5061

    Article  CAS  Google Scholar 

  28. Wei C, Zhou H, Zhou J (2011) Ultrasensitively sensing acephate using molecular imprinting techniques on a surface plasmon resonance sensor. Talanta 83(5):1422–1427

    Article  CAS  Google Scholar 

  29. Li N, Qi L, Shen Y, Qiao J, Chen Y (2014) Novel oligo(ethylene glycol)-based molecularly imprinted magnetic nanoparticles for thermally modulated capture and release of lysozyme. ACS Appl Mater Interfaces 6(19):17289–17295

    Article  CAS  Google Scholar 

  30. Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40(5):2922–2942

    Article  CAS  Google Scholar 

  31. Lofgreen JE, Ozin GA (2014) Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chem Soc Rev 43(3):911–933

    Article  CAS  Google Scholar 

  32. Guo C, Zhou C, Sai N, Ning B, Liu M, Chen H, Gao Z (2012) Detection of bisphenol a using an opal photonic crystal sensor. Sensors Actuators B Chem 166-167:17–23

    Article  CAS  Google Scholar 

  33. Hu X, An Q, Li G, Tao S, Liu J (2006) Imprinted photonic polymers for chiral recognition. Angew Chem Int Ed 45(48):8145–8148

    Article  CAS  Google Scholar 

  34. Meng L, Meng P, Zhang Q, Wang Y (2013) Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels. Anal Chim Acta 771:86–94

    Article  CAS  Google Scholar 

  35. Jiang P, Hwang KS, Mittleman DM, Bertone JF, Colvin VL (1999) Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids. J Am Chem Soc 121(50):11630–11637

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (21874037, 21675045, and 21505038) and the International Scientific and Technological Cooperation Projects of China (2012DFR40480).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhou or Zhaoyang Wu.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors. In this experiment, we did not collect any samples of human and animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Shi, W., Cheng, M. et al. Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine. Microchim Acta 185, 557 (2018). https://doi.org/10.1007/s00604-018-3080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3080-3

Keywords

Navigation