Skip to main content
Log in

Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 230 refs.) covers recent progress in rapid optical assays for heavy metals (primarily lead and mercury as the most relevant) based on the use of nanoparticles and receptor molecules. An introduction surveys the importance, regulatory demands (such as maximum permissible concentrations) and potential and limitations of various existing methods. This is followed by a general discussion on the use of nanoparticles in optical assays of heavy metals (including properties, basic mechanisms of signal generation). The next sections cover methods for the functionalization of nanoparticles with (a) sulfur-containing compounds (used for modification of nanoparticles or added to the reaction medium), (b) nitrogen-containing compounds (such as amino acids, polypeptides, and heterocyclic molecules), and (c) oxygen-containing species (such as hydroxy and carbonyl compounds). This is continued by a specific description of specific assays based on the use of aptamers as receptors, on the use of deoxyribozymes as synthetic reaction catalysts, of G-quadruplex aptamers, of aptamers in logic gate-type of assays of linear (unstructured) aptamers (“hairpins”), and on the use of aptamers in lateral flow assays. A next section covers assays based on the employment of antibodies as receptors (used in the immunoassay development). The properties of various nanoparticles and their applicability in optical assays are also discussed in some detail. Final sections discuss the selectivity of assays, potential interferences by other cations, methods for their elimination, and also matrix effects and approaches for sample pretreatment. A concluding section discusses current challenges and future trends. Analysis based on enzyme inhibition assay is not treated here but enzyme-like action of some receptor molecules such as DNAzymes is discussed.

Schematic presentation of main principles of application of various nanoparticles with receptor molecules (S-, N-, O-containing, heterocyclic compounds, proteins, antibody, aptamers) for heavy metals ions detection. The included methods cover optical assays with description of mechanisms of interactions and signal generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309

    PubMed  Google Scholar 

  2. Raja S, Cheema HMN, Babar S, Khan AA, Murtaza G, Aslam U (2015) Socio-economic background of wastewater irrigation and bioaccumulation of heavy metals in crops and vegetables. Agric Water Manag 158:26–34

    Google Scholar 

  3. Liao J, Wen Z, Ru X, Chen J, Wu H, Wei C (2016) Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: public health implications in Guangdong Province, China. Ecotoxicol Environ Saf 124:460–469

    CAS  PubMed  Google Scholar 

  4. Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, Wang F, Brookes PC (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463-464:530–540

    CAS  PubMed  Google Scholar 

  5. Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468-469:843–853

    CAS  PubMed  Google Scholar 

  6. Kanwal R, Fiza F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119:157–184

    Google Scholar 

  7. Ha E, Basu N, Bose-O’Reilly S, Dórea JG, McSorley E, Sakamoto M, Chan HM (2017) Current progress on understanding the impact of mercury on human health. Environ Res 152:419–433

    CAS  PubMed  Google Scholar 

  8. Mendez E, Giudice H, Pereira A, Inocente G, Medina D (2001) Total mercury content—fish weight relationship in swordfish (Xiphias gladius) caught in the Southwest Atlantic Ocean. J Food Compos Anal 14:453–460

    CAS  Google Scholar 

  9. Méndez E, Giudice H, Pereira A, Inocente G, Medina D (2001) Preliminary report on the total mercury content of Patagonian toothfish (Dissostichos eleginoides). J Food Compos Anal 14:547–549

    Google Scholar 

  10. Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22:13772–13799

    CAS  Google Scholar 

  11. Sanitary Regulation (SanPiN) 2.1.4.559–96 (1996) Drinking water. Hygienic requirements for water quality of centralized drinking water supply. Quality control., Moscow, 1996. (In Russian)

  12. WHO (2008) Guidelines for drinking-water quality, 3rd edition incorporating 1st and 2nd addenda. Vol. 1. Recommendations. Geneva, World Health Organization. http://www.who.int/water_sanitation_health/dwq/GDW12rev1and2.pdf:392–394. Accessed 16 Nov 2018

  13. WHO (2005) Mercury in drinking-water. Background document for development of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/WSH/05.08/10)

  14. Directive 2006/11/EC (2006) Directive 2006/11/EC of the European Parliament and of the Council of 15 February 2006 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community (Codified version) [Official Journal L 64 of 4.4.2006]

  15. Directive 79/869/EEC (1979) Council Directive 79/869/EEC of 9 October 1979 concerning the methods of measurement and frequencies of sampling and analysis of surface water intended for the abstraction of drinking water in the Member States. OJ L 271, 29.10.1979, p. 44–53

  16. Drinking Water Contaminants. Available online: http://water.epa.gov/drink/contaminants/index.cfm#Inorganic. Accessed 3 June 2013

  17. U.S. Environmental Protection Agency (2018) http://www.epa.gov

  18. Kumar M, Puri A (2012) A review of permissible limits of drinking water. Indian J Occup Environ Med 16:40–44

    PubMed  PubMed Central  Google Scholar 

  19. (1993) Indian Standard for Drinking Water as per BIS specifications (IS 10500)

  20. Zhao X, Wang H, Tang Z et al (2018) Amendment of water quality standards in China: viewpoint on strategic considerations. Environ Sci Pollut Res 25:3078. https://doi.org/10.1007/s11356-016-7357-y

  21. (2012) Guidelines for Canadian Drinking Water Quality - Summary Table. Prepared by the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment. http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/2012-sum_guide-res_recom/index-eng.php#t2. Accessed Feb 2017

  22. Standard C33 ASTM (2003 (2006)) Specification for Concrete Aggregates. ASTM International, West Conshohocken, PA, 2006, DOI: https://doi.org/10.1520/C0033-03R06, www.astm.org. Accessed Dec 2017

  23. U.S. EPA. (1998) Method 7473 (SW-846): mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Revision 0. Washington, DC

  24. U.S. EPA (2005) Method 245.7, mercury in water by cold vapor atomic fluorescence spectrometry. EPA-821-R-05-001. U.S. Environmental Protection Agency Office of Water, Office of Science and Technology Engineering and Analysis Division (4303). Revision 2.0, Washington, DC

  25. Russian State Standard (GOST R) 51232-98 (1998) Drinking water. General requirements for the organization and quality control methods (in russian). Accessed on December, 2002

  26. Russian State Standard (GOST) 18293-72 (1974) Drinking water. Methods for the determination of lead, zinc, silver (in Russian). Accessed on December, 2014

  27. Russian State Standard (GOST R) 51212-98 (1998) Drinking water. Methods for determination of the total mercury content by flameless atomic absorption spectrometry (in russsian). Revision 5. Accessed on December, 2018

  28. Walekar L, Dutta T, Kumar P, Ok YS, Pawar S, Deep A, Kim KH (2017) Functionalized fluorescent nanomaterials for sensing pollutants in the environment: a critical review. TrAC Trends Anal Chem 97:458–467

    CAS  Google Scholar 

  29. Saidur MR, Aziz ARA, Basirun WJ (2017) Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron 90:125–139

    CAS  PubMed  Google Scholar 

  30. Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchim Acta 184:45–58

    CAS  Google Scholar 

  31. Chansuvarn W, Tuntulani T, Imyim A (2015) Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. TrAC Trends Anal Chem 65:83–96

    CAS  Google Scholar 

  32. Abu-Dief AM, Hamdan SK (2016) Functionalization of magnetic nano particles: synthesis, characterization and their application in water purification. American Journal of Nanosciences 2:26–40

    Google Scholar 

  33. Zhou Y, Tang L, Zeng G, Zhang C, Zhang Y, Xie X (2016) Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: a review. Sensors Actuators B Chem 223:280–294

    CAS  Google Scholar 

  34. Mehta J, Bhardwaj SK, Bhardwaj N, Paul AK, Kumar P, Kim K-H, Deep A (2016) Progress in the biosensing techniques for trace-level heavy metals. Biotechnol Adv 34:47–60

    CAS  PubMed  Google Scholar 

  35. Huber J, Leopold K (2016) Nanomaterial-based strategies for enhanced mercury trace analysis in environmental and drinking waters. TrAC Trends Anal Chem 80:280–292

    CAS  Google Scholar 

  36. Deshmukh MA, Shirsat MD, Ramanaviciene A, Ramanavicius A (2018) Composites based on conducting polymers and carbon nanomaterials for heavy metal ion sensing (review). Crit Rev Anal Chem 48:293–304

  37. Hemmati M, Rajabi M, Asghari A (2018) Magnetic nanoparticle based solid-phase extraction of heavy metal ions: a review on recent advances. Microchim Acta 185:160

    Google Scholar 

  38. Zhou W, Saran R, Liu J (2017) Metal sensing by DNA. Chem Rev 117:8272–8325

    CAS  PubMed  Google Scholar 

  39. Yang D, Liu X, Zhou Y, Luo L, Zhang J, Huang A, Mao Q, Chen X, Tang L (2017) Aptamer-based biosensors for detection of lead(ii) ion: a review. Anal Methods 9:1976–1990

    CAS  Google Scholar 

  40. Huang J, Su X, Li Z (2017) Metal ion detection using functional nucleic acids and nanomaterials. Biosens Bioelectron 96:127–139

    CAS  PubMed  Google Scholar 

  41. Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973–10042

    CAS  PubMed  Google Scholar 

  42. Botasini S, Heijo G, Méndez E (2013) Toward decentralized analysis of mercury (II) in real samples. A critical review on nanotechnology-based methodologies. Anal Chim Acta 800:1–11

    CAS  PubMed  Google Scholar 

  43. Chen P-C, Periasamy AP, Harroun SG, Wu W-P, Chang H-T (2016) Photoluminescence sensing systems based on copper, gold and silver nanomaterials. Coord Chem Rev 320:129–138

    Google Scholar 

  44. Li M, Zhou X, Ding W, Guo S, Wu N (2013) Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosens Bioelectron 41:889–893

    PubMed  Google Scholar 

  45. Guo Y, Zhang L, Zhang S, Yang Y, Chen X, Zhang M (2014) Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens Bioelectron 63C:61–71

    Google Scholar 

  46. Han WS, Lee HY, Jung SH, Lee SJ, Jung JH (2009) Silica-based chromogenic and fluorogenic hybrid chemosensor materials. Chem Soc Rev 38:1904–1915

    CAS  PubMed  Google Scholar 

  47. Ebrahimzadeh H, Moazzen E, Amini MM, Sadeghi O (2013) Pyridine-2,6-diamine-functionalized Fe(3)O(4) nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples. Int J Cosmet Sci 35:176–182

    CAS  PubMed  Google Scholar 

  48. Ríos Á, Zougagh M (2016) Recent advances in magnetic nanomaterials for improving analytical processes. TrAC Trends Anal Chem 84:72–83

    Google Scholar 

  49. Aguilar-Arteaga K, Rodriguez JA, Barrado E (2010) Magnetic solids in analytical chemistry: a review. Anal Chim Acta 674:157–165

    CAS  PubMed  Google Scholar 

  50. Deshmukh S, Kandasamy G, Upadhyay RK, Bhattacharya G, Banerjee D, Maity D, Deshusses MA, Roy SS (2017) Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J Electroanal Chem 788:91–98

    CAS  Google Scholar 

  51. Zhao Q, Rong X, Chen L, Ma H, Tao G (2013) Layer-by-layer self-assembly xylenol orange functionalized CdSe/CdS quantum dots as a turn-on fluorescence lead ion sensor. Talanta 114:110–116

    CAS  PubMed  Google Scholar 

  52. Zhao Q, Rong X, Ma H, Tao G (2013) Dithizone functionalized CdSe/CdS quantum dots as turn-on fluorescent probe for ultrasensitive detection of lead ion. J Hazard Mater 250-251:45–52

    CAS  PubMed  Google Scholar 

  53. Li M, Zhou X, Guo S, Wu N (2013) Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74

    CAS  PubMed  Google Scholar 

  54. Park YI, Kim E, Huang C-H, Park KS, Castro CM, Lee H, Weissleder R (2017) Facile coating strategy to functionalize inorganic nanoparticles for biosensing. Bioconjug Chem 28:33–37

    CAS  PubMed  Google Scholar 

  55. Saleh SM, Ali R, Wolfbeis OS (2011) Quenching of the luminescence of upconverting luminescent nanoparticles by heavy metal ions. Chem Eur J 17:14611–14617

    CAS  PubMed  Google Scholar 

  56. Griep MH, West AL, Sellers MSP, Karna M, Zhan E, Hoque N (2015) Biomediated atomic metal nanoclusters: synthesis and theory. In: Aliofkhazraei M (ed) Handbook of Nanoparticles. Springer International Publishing, Cham, pp 1–24

    Google Scholar 

  57. Mo Q, Wei J, Jiang K, Zhuang Z, Yu Y (2017) Hollow α-Fe2O3 nanoboxes derived from metal–organic frameworks and their superior ability for fast extraction and magnetic separation of trace Pb2+. ACS Sustain Chem Eng 5:1476–1484

    CAS  Google Scholar 

  58. Liang G, Man Y, Li A, Jin X, Liu X, Pan L (2017) DNAzyme-based biosensor for detection of lead ion: a review. Microchem J 131:145–153

    CAS  Google Scholar 

  59. Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    CAS  PubMed  Google Scholar 

  60. Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner PH (2017) Gold nanoparticle-based colorimetric biosensors. Nanoscale 10:18–33

    CAS  PubMed  Google Scholar 

  61. Hsieh HV, Dantzler JL, Weigl BH (2017) Analytical tools to improve optimization procedures for lateral flow assays. Diagnostics 7:29

    CAS  PubMed Central  Google Scholar 

  62. Hayat MA (1989) Colloidal gold : principles, methods, and applications. Academic Press, San Diego

    Google Scholar 

  63. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Google Scholar 

  64. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci 241:20–22

    CAS  Google Scholar 

  65. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    CAS  PubMed  Google Scholar 

  66. Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46:3128–3136

    CAS  Google Scholar 

  67. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun 1655–1656

  68. Navarro Julien RG, Lerouge F (2017) From gold nanoparticles to luminescent nano-objects: experimental aspects for better gold-chromophore interactions. Nanophotonics, pp 71

  69. Wender H, Andreazza ML, Correia RRB, Teixeira SR, Dupont J (2011) Synthesis of gold nanoparticles by laser ablation of an Au foil inside and outside ionic liquids. Nanoscale 3:1240–1245

    CAS  PubMed  Google Scholar 

  70. Rithesh Raj D, Prasanth S, Vineeshkumar TV, Sudarsanakumar C (2016) Surface plasmon resonance based fiber optic sensor for mercury detection using gold nanoparticles PVA hybrid. Opt Commun 367:102–107

    CAS  Google Scholar 

  71. Hong M, Zeng B, Li M, Xu X, Chen G (2018) An ultrasensitive conformation-dependent colorimetric probe for the detection of mercury(II) using exonuclease III-assisted target recycling and gold nanoparticles. Microchim Acta 185:72

    Google Scholar 

  72. Safavi A, Ahmadi R, Mohammadpour Z (2017) Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles. Sensors Actuators B Chem 242:609–615

    CAS  Google Scholar 

  73. Duan J, Yin H, Wei R, Wang W (2014) Facile colorimetric detection of Hg2+ based on anti-aggregation of silver nanoparticles. Biosens Bioelectron 57:139–142

    CAS  PubMed  Google Scholar 

  74. Du J, Zhu B, Peng X, Chen X (2014) Optical reading of contaminants in aqueous media based on gold nanoparticles. Small 10:3461–3479

    CAS  PubMed  Google Scholar 

  75. Ebrahiminezhad A, Taghizadeh S-M, Taghizadeh S, Ghasemi Y (2017) Chemical and biological approaches for the synthesis of silver nanoparticles; a mini review. Trends Pharmacol Sci 3:55–62

    CAS  Google Scholar 

  76. Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43

    CAS  PubMed  Google Scholar 

  77. Narayanan KB, Han SS (2017) Highly selective and quantitative colorimetric detection of mercury(II) ions by carrageenan-functionalized Ag/AgCl nanoparticles. Carbohydr Polym 160:90–96

    CAS  PubMed  Google Scholar 

  78. Sharma P, Mourya M, Choudhary D, Goswami M, Kundu I, Dobhal MP, Tripathi CSP, Guin D (2018) Thiol terminated chitosan capped silver nanoparticles for sensitive and selective detection of mercury (II) ions in water. Sensors Actuators B Chem 268:310–318

    CAS  Google Scholar 

  79. Shirkhanloo H, Osanloo M, Ghazaghi M, Hassani H (2017) Validation of a new and cost-effective method for mercury vapor removal based on silver nanoparticles coating on micro glassy balls. Atmos Pollut Res 8:359–365

    Google Scholar 

  80. Liu Y, Deng Y, Dong H, Liu K, He N (2017) Progress on sensors based on nanomaterials for rapid detection of heavy metal ions. SCIENCE CHINA Chem 60:329–337

    CAS  Google Scholar 

  81. Gaur MS, Yadav R, Berlina AN, Zherdev AV, Dzantiev BB (2016) Chemiluminescence catalysed by gold nanoparticles for the analysis of arsenic (III) in real water. J Exp Nanosci 11:1372–1383

    CAS  Google Scholar 

  82. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    CAS  Google Scholar 

  83. Saroka VA, Lukyanchuk I, Portnoi ME, Abdelsalam H (2017) Electro-optical properties of phosphorene quantum dots. Phys Rev B 96:085436

    Google Scholar 

  84. Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V (2015) Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron 15:562–574

    Google Scholar 

  85. Rezaei B, Shahshahanipour M, Ensafi AA, Farrokhpour H (2017) Development of highly selective and sensitive fluorimetric label-free mercury aptasensor based on cysteamine@CdTe/ZnS quantum dots, experimental and theoretical investigation. Sensors Actuators B Chem 247:400–407

    CAS  Google Scholar 

  86. Bhardwaj S, Itteboina R, Sau TK (2016) Observing ultra-small gold cluster to plasmonic nanoparticle evolution in a one-pot aqueous synthesis. ChemistrySelect 1:3091–3096

    CAS  Google Scholar 

  87. Bittar DB, Ribeiro DSM, Páscoa RNMJ, Soares JX, Rodrigues SSM, Castro RC, Pezza L, Pezza HR, Santos JLM (2017) Multiplexed analysis combining distinctly-sized CdTe-MPA quantum dots and chemometrics for multiple mutually interfering analyte determination. Talanta 174:572–580

    CAS  PubMed  Google Scholar 

  88. Baghayeri M, Amiri A, Maleki B, Alizadeh Z, Reiser O (2018) A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sensors Actuators B Chem 273:1442–1450

    CAS  Google Scholar 

  89. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes--the route toward applications. Science 297:787–792

    CAS  PubMed  Google Scholar 

  90. Pokhrel LR, Ettore N, Jacobs ZL, Zarr A, Weir MH, Scheuerman PR, Kanel SR, Dubey B (2017) Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury(II) detection in water: a review. Sci Total Environ 574:1379–1388

    CAS  PubMed  Google Scholar 

  91. Aragay G, Merkoçi A (2012) Nanomaterials application in electrochemical detection of heavy metals. Electrochim Acta 84:49–61

    CAS  Google Scholar 

  92. Achadu OJ, Nyokong T (2017) Graphene quantum dots anchored onto mercaptopyridine-substituted zinc phthalocyanine-Au@Ag nanoparticle hybrid: application as fluorescence “off-on-off” sensor for Hg2+ and biothiols. Dyes Pigments 145:189–201

    CAS  Google Scholar 

  93. Anh NTN, Chowdhury AD, R-a D (2017) Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater. Sensors Actuators B Chem 252:1169–1178

    Google Scholar 

  94. Yan Z, Qu X, Niu Q, Tian C, Fan C, Ye B (2016) A green synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the highly sensitive and selective detection of mercury(ii) ions and biothiols. Anal Methods 8:1565–1571

    CAS  Google Scholar 

  95. Wu H, Jiang J, Gu X, Tong C (2017) Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and L-cysteine. Microchim Acta 184:2291–2298

    CAS  Google Scholar 

  96. Korent Urek Š, Frančič N, Turel M, Lobnik A (2013) Sensing heavy metals using mesoporous-based optical chemical sensors. J Nanomater 2013:13

    Google Scholar 

  97. Saleh TA (2016) Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(II): from surface properties to sorption mechanism. Desalin Water Treat 57:10730–10744

    CAS  Google Scholar 

  98. Li S, Wei T, Tang M, Chai F, Qu F, Wang C (2018) Facile synthesis of bimetallic Ag-Cu nanoparticles for colorimetric detection of mercury ion and catalysis. Sensors Actuators B Chem 255:1471–1481

    CAS  Google Scholar 

  99. Takahashi Y (2016) Dye nanoparticle or nanocomposite-coated test papers for detection at ppb levels of harmful ions. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer International Publishing, Cham, pp 843–859

    Google Scholar 

  100. Zopes D, Stein B, Mathur S, Graf CM (2013) Improved stability of “naked” gold nanoparticles enabled by in situ coating with mono and multivalent thiol PEG ligands. Langmuir 29:11217–11226

    CAS  PubMed  Google Scholar 

  101. Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167

    Google Scholar 

  102. Yang Y, Han A, Li R, Fang G, Liu J, Wang S (2017) Synthesis of highly fluorescent gold nanoclusters and its use in sensitive analysis of metal ions. Analyst 142:4486–4493

    CAS  PubMed  Google Scholar 

  103. Wei H, Wang Z, Yang L, Tian S, Hou C, Lu Y (2010) Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 135:1406–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zang J, Li C, Zhou K, Dong H, Chen B, Wang F, Zhao G (2016) Nanomolar Hg2+ detection using β-lactoglobulin-stabilized fluorescent gold nanoclusters in beverage and biological media. Anal Chem 88:10275–10283

    CAS  PubMed  Google Scholar 

  105. Pawar SP, Walekar LS, Kondekar UR, Gunjal DB, Gore AH, Anbhule PV, Patil SR, Kolekar GB (2016) A quantum dot-based dual fluorescent probe for recognition of mercuric ions and N-acetylcysteine: “On-Off-On” approach. Anal Methods 8:6512–6519

    CAS  Google Scholar 

  106. Ji L, Wang J, Zhu L, Zu Y, Kong J, Chen Z (2016) Differentiation of biothiols from other sulfur-containing biomolecules using iodide-capped gold nanoparticles. RSC Adv 6:25101–25109

    CAS  Google Scholar 

  107. Landes C, Burda C, Braun M, El-Sayed MA (2001) Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-butylamine. J Phys Chem B 105:2981–2986

    CAS  Google Scholar 

  108. Volker J, Zhou X, Ma X, Flessau S, Lin H, Schmittel M et al (2010) Semiconductor nanocrystals with adjustable hole acceptors: tuning the fluorescence intensity by metal-ion binding. Angew Chem Int Ed Engl 49:6865–6868

    PubMed  Google Scholar 

  109. Maiti S, Barman G, Konar Laha J (2016) Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Appl Nanosci 6:529–538

    CAS  Google Scholar 

  110. Hung Y-L, Hsiung T-M, Chen Y-Y, Huang Y-F, Huang C-C (2010) Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J Phys Chem C 114:16329–16334

    CAS  Google Scholar 

  111. Zhang H, Wang S, Chen Z, Ge P, Jia R, Xiao E, Zeng W (2017) A turn-on fluorescent nanoprobe for lead(II) based on the aggregation of weakly associated gold(I)-glutathione nanoparticles. Microchim Acta 184:4209–4215

    CAS  Google Scholar 

  112. Zhou Y, Dong H, Liu L, Li M, Xiao K, Xu M (2014) Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sensors Actuators B Chem 196:106–111

    CAS  Google Scholar 

  113. Hung Y-L, Hsiung T-M, Chen Y-Y, Huang C-C (2010) A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles. Talanta 82:516–522

    CAS  PubMed  Google Scholar 

  114. Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan L, Zhang Y (2012) A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids Surf A Physicochem Eng Asp 395:161–167

    CAS  Google Scholar 

  115. Li ZP, Duan XR, Liu CH, Du BA (2006) Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Anal Biochem 351:18–25

    CAS  PubMed  Google Scholar 

  116. Wang J, Li YF, Huang CZ, Wu T (2008) Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles. Anal Chim Acta 626:37–43

    CAS  PubMed  Google Scholar 

  117. Zhong G, Liu J, Liu X (2015) A fast colourimetric assay for lead detection using label-free gold nanoparticles (AuNPs). Micromachines 6:462–472

    Google Scholar 

  118. Lim IIS, Mott D, Ip W, Njoki PN, Pan Y, Zhou S, Zhong CJ (2008) Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir 24:8857–8863

    CAS  PubMed  Google Scholar 

  119. Zhang Y, Leng Y, Miao L, Xin J, Wu A (2013) The colorimetric detection of Pb2+ by using sodium thiosulfate and hexadecyl trimethyl ammonium bromide modified gold nanoparticles. Dalton Trans 42:5485–5490

    CAS  PubMed  Google Scholar 

  120. Lu S, Wu D, Li G, Lv Z, Chen Z, Chen L, Chen G, Xia L, You J, Wu Y (2016) Carbon dots-based ratiometric nanosensor for highly sensitive and selective detection of mercury(ii) ions and glutathione. RSC Adv 6:103169–103177

    CAS  Google Scholar 

  121. Chen Y, Yao L, Deng Y, Pan D, Ogabiela E, Cao J, Adeloju SB, Chen W (2015) Rapid and ultrasensitive colorimetric detection of mercury(II) by chemically initiated aggregation of gold nanoparticles. Microchim Acta 182:2147–2154

    CAS  Google Scholar 

  122. Du J, Zhu B, Chen X (2013) Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion. Small 9:4104–4111

    CAS  PubMed  Google Scholar 

  123. Bhattacharjee Y, Chatterjee D, Chakraborty A (2018) Mercaptobenzoheterocyclic compounds functionalized silver nanoparticle, an ultrasensitive colorimetric probe for Hg(II) detection in water with picomolar precision: a correlation between sensitivity and binding affinity. Sensors Actuators B Chem 255:210–216

    CAS  Google Scholar 

  124. Zhu D, Li X, Liu X, Wang J, Wang Z (2012) Designing bifunctionalized gold nanoparticle for colorimetric detection of Pb2+ under physiological condition. Biosens Bioelectron 31:505–509

    CAS  PubMed  Google Scholar 

  125. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    CAS  PubMed  Google Scholar 

  126. Kou X, Zhang S, Yang Z, Tsung C-K, Stucky GD, Sun L, Wang J, Yan C (2007) Glutathione- and cysteine-induced transverse overgrowth on gold nanorods. J Am Chem Soc 129:6402–6404

    CAS  PubMed  Google Scholar 

  127. Guan H, Liu X, Wang W, Liang J (2014) Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 121:527–532

    CAS  PubMed  Google Scholar 

  128. Wang X, Liu F, Shao Q, Yin Z, Wang L, Fu Z (2017) A novel chemiluminescent immunochromatographic assay strip for rapid detection of mercury ions. Anal Methods 9:2401–2406

    CAS  Google Scholar 

  129. Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Microchim Acta 126:177–192

    CAS  Google Scholar 

  130. Buduru P, Reddy BCSR, Naidu NVS (2017) Functionalization of silver nanoparticles with glutamine and histidine for simple and selective detection of Hg2+ ion in water samples. Sensors Actuators B Chem 244:972–982

    CAS  Google Scholar 

  131. Noh K-C, Nam Y-S, Lee H-J, Lee K-B (2015) A colorimetric probe to determine Pb2+ using functionalized silver nanoparticles. Analyst 140:8209–8216

    PubMed  Google Scholar 

  132. Du J, Yin S, Jiang L, Ma B, Chen X (2013) A colorimetric logic gate based on free gold nanoparticles and the coordination strategy between melamine and mercury ions. Chem Commun 49:4196–4198

    CAS  Google Scholar 

  133. Leng Y, Li Y, Gong A, Shen Z, Chen L, Wu A (2013) Colorimetric response of dithizone product and hexadecyl trimethyl ammonium bromide modified gold nanoparticle dispersion to 10 types of heavy metal ions: understanding the involved molecules from experiment to simulation. Langmuir 29:7591–7599

    CAS  PubMed  Google Scholar 

  134. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water – an electrochemical approach. Sensors Actuators B Chem 213:515–533

    CAS  Google Scholar 

  135. Mehdinia A, Basiri S, Jabbari A (2016) A novel label-free method for determination of inorganic mercury in environmental aqueous media using BSA-modified silver nanoparticles. Int J Environ Sci Technol 13:2663–2674

    CAS  Google Scholar 

  136. Giannakopoulos E, Christoforidis KC, Tsipis A, Jerzykiewicz M, Deligiannakis Y (2005) Influence of Pb(II) on the radical properties of humic substances and model compounds. J Phys Chem A 109:2223–2232

    CAS  PubMed  Google Scholar 

  137. Jerzykiewicz M (2004) Formation of new radicals in humic acids upon interaction Pb(II) ions. Geoderma 122:305–309

    CAS  Google Scholar 

  138. Jezierski A, Czechowski F, Jerzykiewicz M, Golonka I, Drozd J, Bylinska E, Chen Y, Seaward MRD (2002) Quantitative EPR study on free radicals in the natural polyphenols interacting with metal ions and other environmental pollutants. Spectrochim Acta A Mol Biomol Spectrosc 58:1293–1300

    PubMed  Google Scholar 

  139. Jezierski A, Czechowski F, Jerzykiewicz M, Chen Y, Drozd J (2000) Electron paramagnetic resonance (EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal. Spectrochim Acta A Mol Biomol Spectrosc 56A:379–385

    CAS  PubMed  Google Scholar 

  140. Onireti OO, Lin C, Qin J (2017) Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils. Chemosphere 170:161–168

    CAS  PubMed  Google Scholar 

  141. Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C 111:12839–12847

    CAS  Google Scholar 

  142. Ding N, Cao Q, Zhao H, Yang Y, Zeng L, He Y, Xiang K, Wang G (2010) Colorimetric assay for determination of lead (II) based on its incorporation into gold nanoparticles during their synthesis. Sensors (Basel) 10:11144–11155

    CAS  Google Scholar 

  143. Huang K-W, Yu C-J, Tseng W-L (2010) Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid–capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosens Bioelectron 25:984–989

    CAS  PubMed  Google Scholar 

  144. Wu YS, Huang FF, Lin YW (2013) Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized Au nanoparticles. ACS Appl Mater Interfaces 5:1503–1509

    CAS  PubMed  Google Scholar 

  145. Berlina AN, Sharma AK, Zherdev AV, Gaur MS, Dzantiev BB (2015) Colorimetric determination of lead using gold nanoparticles. Anal Lett 48:766–782

    CAS  Google Scholar 

  146. Silva-De Hoyos LE, Sánchez-Mendieta V, Vilchis-Nestor AR, Camacho-López MA (2017) Biogenic silver nanoparticles as sensors of Cu2+ and Pb2+ in aqueous solutions. Univ J Mater Sci 5:29–37

    Google Scholar 

  147. Joseph J, Anappara AA (2017) Ellagic acid-functionalized fluorescent carbon dots for ultrasensitive and selective detection of mercuric ions via quenching. J Lumin 192:761–766

    CAS  Google Scholar 

  148. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC Trends Anal Chem 27:108–117

    CAS  Google Scholar 

  149. Justino CIL, Freitas AC, Pereira R, Duarte AC, Rocha Santos TAP (2015) Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends Anal Chem 68:2–17

    CAS  Google Scholar 

  150. Farkhari N, Abbasian S, Moshaii A, Nikkhah M (2016) Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: investigating some important parameters in bio-sensing applications. Colloids Surf B: Biointerfaces 148:657–664

    CAS  PubMed  Google Scholar 

  151. Tan D, He Y, Xing X, Zhao Y, Tang H, Pang D (2013) Aptamer functionalized gold nanoparticles based fluorescent probe for the detection of mercury (II) ion in aqueous solution. Talanta 113:26–30

    CAS  PubMed  Google Scholar 

  152. Wu Y, Zhan S, Wang L, Zhou P (2014) Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 139:1550–1561

    CAS  PubMed  Google Scholar 

  153. Li L, Wen Y, Xu L, Xu Q, Song S, Zuo X, Yan J, Zhang W, Liu G (2016) Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes. Biosens Bioelectron 75:433–445

    CAS  PubMed  Google Scholar 

  154. Chen B, Wang Z, Hu D, Ma Q, Huang L, Xv C, Guo Z, Jiang X (2014) Scanometric nanomolar lead (II) detection using DNA-functionalized gold nanoparticles and silver stain enhancement. Sensors Actuators B Chem 200:310–316

    CAS  Google Scholar 

  155. Li CL, Huang CC, Chen WH, Chiang CK, Chang HT (2012) Peroxidase mimicking DNA-gold nanoparticles for fluorescence detection of the lead ions in blood. Analyst 137:5222–5228

    CAS  PubMed  Google Scholar 

  156. Gao W, Zhang A, Chen Y, Chen Z, Lu F (2013) A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform. Biosens Bioelectron 49:139–145

    CAS  PubMed  Google Scholar 

  157. Wu Z, Shen H, Hu J, Fu Q, Yao C, Yu S, Xiao W, Tang Y (2017) Aptamer-based fluorescence-quenching lateral flow strip for rapid detection of mercury (II) ion in water samples. Anal Bioanal Chem 409:5209–5216

    CAS  PubMed  Google Scholar 

  158. Xie WY, Huang WT, Luo HQ, Li NB (2012) CTAB-capped Mn-doped ZnS quantum dots and label-free aptamer for room-temperature phosphorescence detection of mercury ions. Analyst 137:4651–4653

    CAS  PubMed  Google Scholar 

  159. Sang F, Liu J, Zhang X, Pan J (2018) An aptamer-based colorimetric Pt(II) assay based on the use of gold nanoparticles and a cationic polymer. Microchim Acta 185:267

    Google Scholar 

  160. Zhang D, Yin L, Meng Z, Yu A, Guo L, Wang H (2014) A sensitive fluorescence anisotropy method for detection of lead (II) ion by a G-quadruplex-inducible DNA aptamer. Anal Chim Acta 812:161–167

    CAS  PubMed  Google Scholar 

  161. Shen T, Yue Q, Jiang X, Wang L, Xu S, Li H, Gu X, Zhang S, Liu J (2013) A reusable and sensitive biosensor for total mercury in canned fish based on fluorescence polarization. Talanta 117:81–86

    CAS  PubMed  Google Scholar 

  162. Zhu Z, Su Y, Li J, Li D, Zhang J, Song S, Zhao Y, Li G, Fan C (2009) Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem 81:7660–7666

    CAS  PubMed  Google Scholar 

  163. Xu Z, Lan T, Huang X, Dong C, Ren J (2015) A sensitive assay of mercury using fluorescence correlation spectroscopy of gold nanoparticles. Luminescence 30:605–610

    CAS  PubMed  Google Scholar 

  164. Sun H, Li X, Li Y, Fan L, Kraatz HB (2013) A novel colorimetric potassium sensor based on the substitution of lead from G-quadruplex. Analyst 138:856–862

    CAS  PubMed  Google Scholar 

  165. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    CAS  PubMed  Google Scholar 

  166. Shahdordizadeh M, Yazdian-Robati R, Ansari N, Ramezani M, Abnous K, Taghdisi SM (2018) An aptamer-based colorimetric lead(II) assay based on the use of gold nanoparticles modified with dsDNA and exonuclease I. Microchim Acta 185:151

    Google Scholar 

  167. Wang H-B, Wang L, Huang K-J, Xu S-P, Wang H-Q, Wang L-L, Liu YM (2013) A highly sensitive and selective biosensing strategy for the detection of Pb2+ ions based on GR-5 DNAzyme functionalized AuNPs. New J Chem 37:2557–2563

    CAS  Google Scholar 

  168. Yan M, Zhu C, Huang Y, Yan J, Chen A (2017) Ultrasensitive detection of lead(II) using a turn-on probe based on the use of an aptamer and a water-soluble fluorescent perylene probe. Microchim Acta 184:2439–2444

    CAS  Google Scholar 

  169. Li Z, Liu M, Fan L, Ke H, Luo C, Zhao G (2014) A highly sensitive and wide-ranged electrochemical zinc(II) aptasensor fabricated on core-shell SiO2-Pt@meso-SiO2. Biosens Bioelectron 52:293–297

    CAS  PubMed  Google Scholar 

  170. Miao X-M, Ling L-S, Shuai X-T (2012) Detection of Pb2+ at attomole levels by using dynamic light scattering and unmodified gold nanoparticles. Anal Biochem 421:582–586

    CAS  PubMed  Google Scholar 

  171. Chung CH, Kim JH, Jung J, Chung BH (2013) Nuclease-resistant DNA aptamer on gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+ in human serum. Biosens Bioelectron 41:827–832

    CAS  PubMed  Google Scholar 

  172. Tianyu H, Xu Y, Weidan N, Xingguang S (2016) Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots. Microchim Acta 183:2131–2137

    Google Scholar 

  173. Wang L, Liu F, Sui N, Liu M, Yu WW (2016) A colorimetric assay for Hg(II) based on the use of a magnetic aptamer and a hybridization chain reaction. Microchim Acta 183:2855–2860

    CAS  Google Scholar 

  174. Kumar DN, Roy J, Alex SA, Chandrasekaran N, Mukherjee A (2016) Spectrofluorimetric determination of Hg2+ and Pb2+ using acetylcholinesterase (AChE)-based formation of silver nanoparticles. RSC Adv 6:21261–21270

    CAS  Google Scholar 

  175. Da Q, Gu Y, Peng X, Zhang L, Du S (2018) Colorimetric and visual detection of mercury(II) based on the suppression of the interaction of dithiothreitol with agar-stabilized silver-coated gold nanoparticles. Microchim Acta 185:357

    Google Scholar 

  176. Zhang H, Xia Y (2016) Ratiometry, wavelength, and intensity: triple signal readout for colorimetric sensing of mercury ions by plasmonic Cu2-xSe nanoparticles. ACS Sensors 1:384–391

    CAS  Google Scholar 

  177. Zhang R, Deng L, Zhu P, Xu S, Huang C, Zeng Y, Ni S, Zhang X (2017) Bienzyme-based visual and spectrophotometric aptamer assay for quantitation of nanomolar levels of mercury(II). Microchim Acta 184:541–546

    CAS  Google Scholar 

  178. Kim JH, Han SH, Chung BH (2011) Improving Pb2+ detection using DNAzyme-based fluorescence sensors by pairing fluorescence donors with gold nanoparticles. Biosens Bioelectron 26:2125–2129

    CAS  PubMed  Google Scholar 

  179. Wang Z, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20:3263–3267

    CAS  Google Scholar 

  180. Wen X-D, Cahill TJ, Hoffmann R (2009) Element lines: bonding in the ternary gold polyphosphides, Au2MP2 with M = Pb, Tl, or Hg. J Am Chem Soc 131:2199–2207

    CAS  PubMed  Google Scholar 

  181. Lien C-W, Tseng Y-T, Huang C-C, Chang H-T (2014) Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal Chem 86:2065–2072

    CAS  PubMed  Google Scholar 

  182. Zhang Y, Liu W, Zhang W, Yu S, Yue X, Zhu W, Zhang D, Wang Y, Wang J (2015) DNA-mediated gold nanoparticle signal transducers for combinatorial logic operations and heavy metal ions sensing. Biosens Bioelectron 72:218–224

    PubMed  Google Scholar 

  183. Qing Z, He X, Wang K, Zou Z, Yang X, Huang J, Yan G (2012) Colorimetric multiplexed analysis of mercury and silver ions by using a unimolecular DNA probe and unmodified gold nanoparticles. Anal Methods 4:3320–3325

    CAS  Google Scholar 

  184. Wang G, Lu Y, Yan C, Lu Y (2015) DNA-functionalization gold nanoparticles based fluorescence sensor for sensitive detection of Hg2+ in aqueous solution. Sensors Actuators B Chem 211:1–6

    CAS  Google Scholar 

  185. Helwa Y, Dave N, Froidevaux R, Samadi A, Liu J (2012) Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury(II) and adenosine. ACS Appl Mater Interfaces 4:2228–2233

    CAS  PubMed  Google Scholar 

  186. Yang L, Yun W, Chen Y, Wu H, Liu X, Fu M, Huang Y (2017) Ultrasensitive colorimetric and fluorometric detection of Hg(II) based on the use of gold nanoparticles and a catalytic hairpin assembly. Microchim Acta 184:4741–4747

    CAS  Google Scholar 

  187. Zhou M, Lin T, Gan X (2017) Colorimetric aggregation assay for silver(I) based on the use of aptamer modified gold nanoparticles and C-Ag(I)-C interaction. Microchim Acta 184:4671–4677

    CAS  Google Scholar 

  188. Liu X, Wu Z, Zhang Q, Zhao W, Zong C, Gai H (2016) Single gold nanoparticle-based colorimetric detection of picomolar mercury ion with dark-field microscopy. Anal Chem 88:2119–2124

    CAS  PubMed  Google Scholar 

  189. Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra Ray P (2008) Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130:8038–8043

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Xie Y (2018) Colorimetric determination of Hg(II) via the gold amalgam induced deaggregation of gold nanoparticles. Microchim Acta 185:351

    Google Scholar 

  191. Yao L, Teng J, Qu H, Zhu M, Zheng L, Xue F, Chen W (2017) Paper matrix based array for rapid and sensitive optical detection of mercury ions using silver enhancement. Microchim Acta 184:569–576

    CAS  Google Scholar 

  192. Wang Q, Yang X, Yang X, Liu P, Wang K, Huang J, Liu J, Song C, Wang J (2015) Colorimetric detection of mercury ion based on unmodified gold nanoparticles and target-triggered hybridization chain reaction amplification. Spectrochim Acta A Mol Biomol Spectrosc 136:283–287

    CAS  PubMed  Google Scholar 

  193. Yu Y, Hong Y, Gao P, Nazeeruddin MK (2016) Glutathione modified gold nanoparticles for sensitive colorimetric detection of Pb2+ ions in rainwater polluted by leaking perovskite solar cells. Anal Chem 88:12316–12322

    CAS  PubMed  Google Scholar 

  194. Berlina AN, Zherdev AV, Pridvorova SM, Gaur MS, Dzantiev BB (2019) Rapid visual detection of lead and mercury via enhanced crosslinking aggregation of aptamer-labeled gold nanoparticles. J Nanosci Nanotechnol 19:1–7

    Google Scholar 

  195. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8:1775–1789

    CAS  PubMed  Google Scholar 

  196. Goossens J, Sein H, Lu S, Radwanska M, Muyldermans S, Sterckx YGJ, Magez S (2017) Functionalization of gold nanoparticles with nanobodies through physical adsorption. Anal Methods 9:3430–3440

    CAS  Google Scholar 

  197. Liu Y, Yu J (2015) Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Microchimica Acta:1–19

  198. Tripathi K, Driskell JD (2018) Quantifying bound and active antibodies conjugated to gold nanoparticles: a comprehensive and robust approach to evaluate immobilization chemistry. ACS Omega 3:8253–8259

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Kuang H, Xing C, Hao C, Liu L, Wang L, Xu C (2013) Rapid and highly sensitive detection of lead ions in drinking water based on a strip immunosensor. Sensors 13:4214–4224

    CAS  PubMed  Google Scholar 

  200. Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24:4811–4841

    CAS  PubMed  Google Scholar 

  201. Wang G, Guo R, Kalyuzhny G, Choi JP, Murray RW (2006) NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. J Phys Chem B 110:20282–20289

    CAS  PubMed  Google Scholar 

  202. Wang G, Huang T, Murray RW, Menard L, Nuzzo RG (2005) Near-IR luminescence of monolayer-protected metal clusters. J Am Chem Soc 127:812–813

    CAS  PubMed  Google Scholar 

  203. Placido T, Aragay G, Pons J, Comparelli R, Curri ML, Merkoçi A (2013) Ion-directed assembly of gold nanorods: a strategy for mercury detection. ACS Appl Mater Interfaces 5:1084–1092

    CAS  PubMed  Google Scholar 

  204. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    CAS  Google Scholar 

  205. Cai H-H, Lin D, Wang J, Yang P-H, Cai J (2014) Controlled side-by-side assembly of gold nanorods: a strategy for lead detection. Sensors Actuators B Chem 196:252–259

    CAS  Google Scholar 

  206. Huang Н, Chen S, Liu F, Zhao Q, Liao B, Yi S et al (2013) Multiplex plasmonic sensor for detection of different metal ions based on single type of gold nanorod. Anal Chem 85:2312–2319

    CAS  PubMed  Google Scholar 

  207. Huang H, Qu C, Liu X, Huang S, Xu Z, Zhu Y et al (2011) Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury. Chem Сommun 47:6897–6899

    CAS  Google Scholar 

  208. Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA (2007) Peptide-conjugated gold nanorods for nuclear targeting. Bioconjug Chem 18:1490–1497

    CAS  PubMed  Google Scholar 

  209. Zhu J, Yu Y-Q, Li J-J, Zhao J-W (2016) Colorimetric detection of lead(ii) ions based on accelerating surface etching of gold nanorods to nanospheres: the effect of sodium thiosulfate. RSC Adv 6:25611–25619

    CAS  Google Scholar 

  210. Nalawade P, Kapoor S (2013) Gold nanoflowers based colorimetric detection of Hg2+ and Pb2+ ions. Spectrochim Acta A Mol Biomol Spectrosc 116:132–135

    CAS  PubMed  Google Scholar 

  211. Ma W, Sun M, Xu L, Wang L, Kuang H, Xu C (2013) A SERS active gold nanostar dimer for mercury ion detection. Chem Commun 49:4989–4991

    CAS  Google Scholar 

  212. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    CAS  PubMed  Google Scholar 

  213. Hudson N, Baker A, Reynolds D (2007) Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Res Appl 23:631–649

    Google Scholar 

  214. Wang R-Z, Zhou D-L, Huang H, Zhang M, Feng J-J, Wang A-J (2013) Water-soluble homo-oligonucleotide stabilized fluorescent silver nanoclusters as fluorescent probes for mercury ion. Microchim Acta 180:1287–1293

    CAS  Google Scholar 

  215. Zhu H, Yu T, Xu H, Zhang K, Jiang H, Zhang Z, Wang Z, Wang S (2014) Fluorescent nanohybrid of gold nanoclusters and quantum dots for visual determination of lead ions. ACS Appl Mater Interfaces 6:21461–21467

    CAS  PubMed  Google Scholar 

  216. Chai F, Wang C, Wang T, Li L, Su Z (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470

    CAS  PubMed  Google Scholar 

  217. Beqa L, Singh AK, Khan SA, Senapati D, Arumugam SR, Ray PC (2011) Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. ACS Appl Mater Interfaces 3:668–673

    CAS  PubMed  Google Scholar 

  218. Guan J, Jiang L, Zhao L, Li J, Yang W (2008) pH-dependent response of citrate capped Au nanoparticle to Pb2+ ion. Colloids Surf A Physicochem Eng Asp 325:194–197

    CAS  Google Scholar 

  219. Ji X, Song X, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948

    CAS  PubMed  Google Scholar 

  220. Harris DC (1999) Quantitative chemical analysis. In: Freeman WH (ed) 5th ed. New York, NY, p 126

  221. Apyari VV, Dmitrienko SG, Arkhipova VV, Atnagulov AG, Gorbunova MV, Zolotov YA (2013) Label-free gold nanoparticles for the determination of neomycin. Spectrochim Acta A Mol Biomol Spectrosc 115:416–420

    CAS  PubMed  Google Scholar 

  222. Apyari VV, Dmitrienko SG, Arkhipova VV, Atnagulov AG, Zolotov YA (2012) Determination of cysteamine using label-free gold nanoparticles. Anal Methods 4:3193–3199

    CAS  Google Scholar 

  223. Řezanka P, Řezanková H, Matějka P, Král V (2010) The chemometric analysis of UV–visible spectra as a new approach to the study of the NaCl influence on aggregation of cysteine-capped gold nanoparticles. Colloids Surf A Physicochem Eng Asp 364:94–98

    Google Scholar 

  224. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. 3rd edn. US Geological Survey Water-Supply Paper 2254, University of Virginia, Charlottesville, p 263

  225. Moss BR (2009) Ecology of fresh waters: man and medium, past to future. 3rd edn. John Wiley & Sons, USA, p 572

  226. Yidana SM, Ophori D, Banoeng-Yakubo B (2008) A multivariate statistical analysis of surface water chemistry data—the Ankobra Basin, Ghana. J Environ Manag 86:80–87

    CAS  Google Scholar 

  227. Zhang B, Song X, Zhang Y, Han D, Tang C, Yu Y, Ma Y (2012) Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res 46:2737–2748

    CAS  PubMed  Google Scholar 

  228. Zhao Y, Xia XH, Yang ZF, Wang F (2012) Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. Procedia Environ Sci 13:1213–1226

    CAS  Google Scholar 

  229. Wingenfelder U, Hansen C, Furrer G, Schulin R (2005) Removal of heavy metals from mine waters by natural zeolites. Environ Sci Technol 39:4606–4613

    CAS  PubMed  Google Scholar 

  230. Wang CI, Huang CC, Lin YW, Chen WT, Chang HT (2012) Catalytic gold nanoparticles for fluorescent detection of mercury(II) and lead(II) ions. Anal Chim Acta 745:124–130

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Grant # 14–14-01131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Dzantiev.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlina, A.N., Zherdev, A.V. & Dzantiev, B.B. Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules. Microchim Acta 186, 172 (2019). https://doi.org/10.1007/s00604-018-3168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3168-9

Keywords

Navigation