Skip to main content
Log in

Amperometric sensing of hydrazine by using single gold nanopore electrodes filled with Prussian Blue and coated with polypyrrole and carbon dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanoprobe for hydrazine sensing is described that is making use of a single gold nanopore electrode (SAuNPEs) that was modified by electro-deposition of Prussian Blue (PB) and then coated with a thin membrane of polypyrrole and carbon dots in order to enhance stability and catalytic activity. Best operated at a low potential of 0.3 V vs. Ag/AgCl, the nanosensor display good electrocatalytic activity towards the oxidation of hydrazine, with a linear response in the 0.5–80 μM hydrazine concentration range and a 0.18 μM detection limit (at S/N = 3). The method was applied to the determination of hydrazine in human urine.

Schematic presentation of the electrocatalytic oxidation of hydrazine using a single gold nanopore electrode that was modified by electro-deposition of Prussian Blue and then coated with a thin membrane of polypyrrole and carbon dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Y, Bergman D, Zhang B (2009) Preparation and electrochemical response of 1-3 nm Pt disk electrodes. Anal Chem 81(13):5496–5502. https://doi.org/10.1021/ac900777n

    Article  CAS  PubMed  Google Scholar 

  2. Wang DM, Hua HM, Liu Y, Tang HR, Li YX (2019) Single Ag nanowire electrodes and single Pt@Ag nanowire electrodes: fabrication, electrocatalysis, and surface-enhanced Raman scattering applications. Anal Chem 91(7):4291–4295. https://doi.org/10.1021/acs.analchem.8b04610

    Article  CAS  PubMed  Google Scholar 

  3. Sun T, Yu Y, Zacher BJ, Mirkin MV (2014) Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew Che Int Ed 53(51):14120–14123. https://doi.org/10.1002/anie.201408408

    Article  CAS  Google Scholar 

  4. Li Y, Cox JT, Zhang B (2010) Electrochemical responses and Electrocatalysis at single Au nanoparticles. J Am Chem Soc 132(9):3047–3054. https://doi.org/10.1021/ja909408q

    Article  CAS  PubMed  Google Scholar 

  5. Salamifar SE, Lai RY (2014) Fabrication of electrochemical DNA sensors on gold-modified recessed platinum Nanoelectrodes. Anal Chem 86(6):2849–2852. https://doi.org/10.1021/ac403816h

    Article  CAS  PubMed  Google Scholar 

  6. Clausmeyer J, Actis P, Cordoba AL, Korchev Y, Schuhmann W (2014) Nanosensors for the detection of hydrogen peroxide. Electrochem Commun 40:28–30. https://doi.org/10.1016/j.elecom.2013.12.015

    Article  CAS  Google Scholar 

  7. Marquitan M, Clausmeyer J, Actis P, Cordoba AL, Korchev Y, Mark MD, Herlitze S, Schuhmann W (2016) Intracellular hydrogen peroxide detection with functionalised Nanoelectrodes. Chemelectrochem 3(12):2125–2129. https://doi.org/10.1002/celc.201600390

    Article  CAS  Google Scholar 

  8. Wang D, Xiao X, Xu S, Liu Y, Li Y (2018) Electrochemical aptamer-based nanosensor fabricated on single au nanowire electrodes for adenosine triphosphate assay. Biosens Bioelectron 99:431–437. https://doi.org/10.1016/j.bios.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, Hua H, Tang H, Yang C, Chen W, Li Y (2019) A signal amplification strategy and sensing application using single gold nanoelectrodes. Analyst 144(1):310–316. https://doi.org/10.1039/c8an01474d

    Article  CAS  Google Scholar 

  10. Liu Y, Zhang Y, Hua H, Li Y (2017) Fabrication of single Pt@Au nanowire electrodes for monitoring hydrogen peroxide released from living cells. RSC Adv 7(70):44552–44558. https://doi.org/10.1039/c7ra08085a

    Article  CAS  Google Scholar 

  11. Hua HM, Liu Y, Guan XP, Li YX (2018) DNA nanosensors based on the use of single gold nanowire electrodes and methylene blue as an intercalator. Microchim Acta 185(2):9. https://doi.org/10.1007/s00604-018-2703-z

    Article  CAS  Google Scholar 

  12. Wang T, Viennois E, Merlin D, Wang G (2015) Microelectrode miRNA sensors enabled by enzyme less electrochemical signal amplification. Anal Chem 87(16):8173–8180. https://doi.org/10.1021/acs.analchem.5b00780

    Article  CAS  PubMed  Google Scholar 

  13. Barlow ST, Louie M, Hao R, Defnet PA, Zhang B (2018) Electrodeposited gold on carbon-fiber microelectrodes for enhancing amperometric detection of dopamine release from pheochromocytoma cells. Anal Chem 90(16):10049–10055. https://doi.org/10.1021/acs.analchem.8b02750

    Article  CAS  PubMed  Google Scholar 

  14. Hamidi H, Bozorgzadeh S, Haghighi B (2017) Amperometric hydrazine sensor using a glassy carbon electrode modified with gold nanoparticle-decorated multiwalled carbon nanotubes. Microchim Acta 184(11):4537–4543. https://doi.org/10.1007/s00604-017-2480-0

    Article  CAS  Google Scholar 

  15. Guo W, Ma J, Cao X, Tong X, Liu F, Liu Y, Zhang Z, Liu S (2017) Amperometric sensing of hydrazine using a magnetic glassy carbon electrode modified with a ternary composite prepared from Prussian blue, Fe3O4 nanoparticles, and reduced graphene oxide. Microchim Acta 184(9):3163–3170. https://doi.org/10.1007/s00604-017-2289-x

    Article  CAS  Google Scholar 

  16. Wang P, Han P, Dong L, Miao XM (2015) Direct potential resolution and simultaneous detection of cytosine and 5-methylcytosine based on the construction of polypyrrole functionalized graphene nanowall interface. Electrochem Commun 61:36–39. https://doi.org/10.1016/j.elecom.2015.09.025

    Article  CAS  Google Scholar 

  17. Wang P, Chen HB, Tian JY, Dai Z, Zou XY (2013) Electrochemical evaluation of DNA methylation level based on the stoichiometric relationship between purine and pyrimidine bases. Biosens Bioelectron 45:34–39. https://doi.org/10.1016/j.bios.2013.01.057

    Article  CAS  PubMed  Google Scholar 

  18. Fu L, Wang AW, Lai GS, Lin CT, Yu JH, Yu AM, Liu Z, Xie KF, Su WT (2018) A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. Microchim Acta 185(2):7. https://doi.org/10.1007/s00604-017-2646-9

    Article  CAS  Google Scholar 

  19. Zhang Y, Xu S, Qian Y, Yang X, Li Y (2015) Preparation, electrochemical responses and sensing application of Au disk nanoelectrodes down to 5 nm. RSC Adv 5(94):77248–77254. https://doi.org/10.1039/c5ra14777h

    Article  CAS  Google Scholar 

  20. Li Y, Wu Q, Jiao S, Xu C, Wang L (2013) Single Pt nanowire electrode: preparation, electrochemistry, and Electrocatalysis. Anal Chem 85(8):4135–4140. https://doi.org/10.1021/ac400331w

    Article  CAS  PubMed  Google Scholar 

  21. Zhang B, Zhang Y, White HS (2004) The nanopore electrode. Anal Chem 76(21):6229–6238. https://doi.org/10.1021/ac049288r

    Article  CAS  PubMed  Google Scholar 

  22. Zhang YY, Xu S, Xiao XQ, Liu Y, Qian YY, Li YX (2017) Single gold nanowire electrodes and single Pt@Au nanowire electrodes: electrochemistry and applications. Chem Commun 53(19):2850–2853. https://doi.org/10.1039/c6cc09854a

    Article  CAS  Google Scholar 

  23. Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381. https://doi.org/10.1039/c4cs00269e

    Article  CAS  PubMed  Google Scholar 

  24. Wang C, Zhang L, Guo ZH, Xu JG, Wang HY, Shi HW, Zhai KF, Zhuo X (2010) A new amperometric hydrazine sensor based on Prussian Blue/single-walled carbon nanotube nanocomposites. Electroanalysis 22(16):1867–1872. https://doi.org/10.1002/elan.201000058

    Article  CAS  Google Scholar 

  25. Miao XM, Cheng ZY, Ma HY, Li ZB, Xue N, Wang P (2018) Label-free platform for MicroRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal Chem 90(2):1098–1103. https://doi.org/10.1021/acs.analchem.7601991

    Article  CAS  PubMed  Google Scholar 

  26. Wang P, Cheng ZY, Chen Q, Qu LL, Miao XM, Feng QM (2018) Construction of a paper-based electrochemical biosensing platform for rapid and accurate detection of adenosine triphosphate (ATP). Sens Actuator B-Chem 256:931–937. https://doi.org/10.1016/j.snb.2017.10.024

    Article  CAS  Google Scholar 

  27. Isenberg SL, Carter MD, Crow BS, Graham LA, Johnson D, Beninato N, Steele K, Thomas JD, Johnson RC (2016) Quantification of hydrazine in human urine by HPLC-MS-MS. J Anal Toxicol 40(4):248–254. https://doi.org/10.1093/jat/bkw015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hao YQ, Zhang YT, Ruan KH, Meng FT, Li T, Guan JS, Du LL, Qu P, Xu MT (2017) A highly selective long-wavelength fluorescent probe for hydrazine and its application in living cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 184:355–360. https://doi.org/10.1016/j.saa.2017.04.041

    Article  CAS  PubMed  Google Scholar 

  29. Song YQ, Chen G, Han XY, You JM, Yu FB (2019) A highly sensitive near-infrared ratiometric fluorescent probe for imaging of mitochondrial hydrazine in cells and in mice models. Sens Actuator B-Chem 286:69–76. https://doi.org/10.1016/j.snb.2019.01.116

    Article  CAS  Google Scholar 

  30. Zhang HJ, Huang JS, Hou HQ, You TY (2009) Electrochemical detection of hydrazine based on electrospun palladium nanoparticle/carbon nanofibers. Electroanalysis 21(16):1869–1874. https://doi.org/10.1002/elan.200904630

    Article  CAS  Google Scholar 

  31. Senthil Kumar A, Barathi P, Chandrasekara Pillai K (2011) In situ precipitation of nickel-hexacyanoferrate within multi-walled carbon nanotube modified electrode and its selective hydrazine electrocatalysis in physiological pH. J Electroanal Chem 654(1):85–95. https://doi.org/10.1016/j.jelechem.2011.01.022

    Article  CAS  Google Scholar 

  32. Cui L, Ji C, Peng Z, Zhong L, Zhou C, Yan L, Qu S, Zhang S, Huang C, Qian X, Xu Y (2014) Unique tri-output optical probe for specific and ultrasensitive detection of hydrazine. Anal Chem 86(9):4611–4617. https://doi.org/10.1021/ac5007552

    Article  CAS  PubMed  Google Scholar 

  33. Subramanian S, Narayanasastri S, Kami Reddy AR (2014) Doping-induced detection and determination of propellant grade hydrazines by a kinetic spectrophotometric method based on nano and conventional polyaniline using halide ion releasing additives. RSC Adv 4(52):27404–27413. https://doi.org/10.1039/C4RA02296C

    Article  CAS  Google Scholar 

  34. Zhang J, Gao W, Dou M, Wang F, Liu J, Li Z, Ji J (2015) Nanorod-constructed porous Co3O4 nanowires: highly sensitive sensors for the detection of hydrazine. Analyst 140(5):1686–1692. https://doi.org/10.1039/C4AN02111H

    Article  CAS  PubMed  Google Scholar 

  35. Oliveira PR, Kalinke C, Mangrich AS, Marcolino LH, Bergamini MF (2018) Copper hexacyanoferrate nanoparticles supported on biochar for amperometric determination of isoniazid. Electrochim Acta 285:373–380. https://doi.org/10.1016/j.electacta.2018.08.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No.21775003, No.21375002), National key Research and Development project of China (No. 2017YFD0701403), and the Foundation for Innovation Team of Bioanalytical Chemistry of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 930 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, H., Tang, H. et al. Amperometric sensing of hydrazine by using single gold nanopore electrodes filled with Prussian Blue and coated with polypyrrole and carbon dots. Microchim Acta 186, 350 (2019). https://doi.org/10.1007/s00604-019-3486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3486-6

Keywords

Navigation