Skip to main content

Advertisement

Log in

Simultaneous amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 by using grafted screen-printed electrodes and a composite prepared from quantum dots and carbon nanotubes for signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This paper describes a dual electrochemical immunoassay for the simultaneous determination of IL-13Rα2 and CDH-17, two biomarkers of emerging relevance in metastatic processes. The sandwich assay uses a screen-printed dual carbon electrode that was electrochemically grafted with p-aminobenzoic acid to allow the covalent immobilization of capture antibodies. A hybrid composed of graphene quantum dots (GQDs) and multiwalled carbon nanotubes (MWCNTs) act as nanocarriers for the detection antibodies and horseradish peroxidase. The use of this hybrid material considerably improves the assay (in comparison to the use of MWCNTs) due to the peroxidase mimicking activity of the GQDs. The method works at a low working potential (0.20 V vs. Ag pseudo-reference electrode) and thus is not readily interfered by unknown electroactive species. The dual immunoassay allows for the selective determination of both biomarkers with LOD values of 1.4 (IL-13sRα2) and 0.03 ng mL−1 (CDH-17). The simultaneous determination of IL-13Rα2 and CDH-17 was accomplished in lysates from breast and colorectal cancer cells with different metastatic potential, and in paraffin-embedded tumor tissues extracts from patients diagnosed with colorectal cancer at different stages. The applicability to discriminate the metastatic potential even in intact cells through the detection of both extracellular receptors has been demonstrated also. The assay can be performed within 3 h, requires small sample amounts (0.5 μg), and has a simple protocol.

Dual amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 in human colorectal cancer cells and tissues by using grafted screen-printed electrodes and composites of quantum dots and carbon nanotubes as nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wong Kee Song LM, Wilson BC (2005) Endoscopic detection of early upper GI cancers. Best Pract Res Clin Gastroenterol 19:833–856

    Article  Google Scholar 

  2. Bernhard OK, Greening DW, Barnes TW, Ji H, Simpson RJ (2013) Detection of cadherin-17 in human colon cancer LIM1215 cell secretome and tumour xenograft-derived interstitial fluid and plasma. Biochim Biophys Acta 1834:2372–2379

    Article  CAS  Google Scholar 

  3. Habermann JK, Bader FG, Franke C, Zimmermann K, Gemoll T, Fritzsche B, Ried T, Auer G, Bruch HP, Roblick UJ (2008) From the genome to the proteome--biomarkers in colorectal cancer. Langenbeck's Arch Surg 393:93–104

    Article  Google Scholar 

  4. Steele RJC (2006) Modern challenges in colorectal cancer. Surgeon 4:285–291

    Article  CAS  Google Scholar 

  5. Duffy MJ (2001) Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem 47:624–630

    CAS  PubMed  Google Scholar 

  6. Stiksma J, Grootendorst DC, van der Linden PW (2014) CA 19-9 as a marker in addition to CEA to monitor colorectal cancer. Clin Colorectal Cancer 13:239–244

    Article  Google Scholar 

  7. Groblewska M, Mroczko B, Gryko M, Pryczynicz A, Guzińska-Ustymowicz K, Kędra B, Kemona A, Szmitkowski M (2014) Serum levels and tissue expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinases 2 (TIMP-2) in colorectal cancer patients. Tumour Biol 35:3793–3802

    Article  CAS  Google Scholar 

  8. Martínez-García G, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2016) Multiplexed electrochemical immunosensing of obesity-related hormones at grafted graphene-modified electrodes. Electrochim Acta 202:209–215

    Article  Google Scholar 

  9. Sánchez-Tirado E, Salvo C, González-Cortés A, Yáñez-Sedeño P, Langa F, Pingarrón JM (2017) Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double-walled carbon nanotubes. Anal Chim Acta 959:66–73

    Article  Google Scholar 

  10. Suzuki A, Leland P, Joshi BH, Puri RK (2015) Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 75:79–88

    Article  CAS  Google Scholar 

  11. Valverde A, Povedano E, Ruiz-Valdepeñas Montiel V, Yáñez-Sedeño P, Garranzo-Asensio M, Barderas R, Campuzano S, Pingarrón JM (2018) Electrochemical immunosensor for IL-13 receptor α2 determination and discrimination of metastatic colon cancer cells. Biosens Bioelectron 117:766–772

    Article  CAS  Google Scholar 

  12. Barderas R, Bartolomé RA, Fernández-Aceñero MJ, Torres S, Casal JI (2012) High expression of IL-13 receptor α2 in colorectal cancer is associated with invasion, liver metastasis, and poor prognosis. Cancer Res 72:2780–2790

    Article  CAS  Google Scholar 

  13. Gessner R, Tauber R (2000) Intestinal cell adhesion molecules. Liver-intestine cadherin. Ann N Y Acad Sci 915:136–143

    Article  CAS  Google Scholar 

  14. Berndorff D, Gessner R, Kreft B, Schnoy N, Lajous-Petter AM, Loch N, Reutter W, Hortsch M, Tauber R (1994) Liver-intestine cadherin: molecular cloning and characterization of a novel Ca(2+)-dependent cell adhesion molecule expressed in liver and intestine. J Cell Biol 125:1353–1369

    Article  CAS  Google Scholar 

  15. Hinoi T, Lucas PC, Kuick R, Hanash S, Cho KR, Fearon ER (2002) CDX2 regulates liver intestine–cadherin expression in normal and malignant colon epithelium and intestinal metaplasia. Gastroenterology 123:1565–1577

    Article  CAS  Google Scholar 

  16. Panarelli NC, Yantiss RK, Yeh MM, Liu Y, Chen YT (2012) Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2. Am J Clin Pathol 138:211–222

    Article  Google Scholar 

  17. Takamura M, Ichida T, Matsuda Y, Kobayashi M, Yamagiwa S, Genda T, Shioji K, Hashimoto S, Nomoto M, Hatakeyama K, Ajioka Y, Sakamoto M, Hirohashi S, Aoyagi Y (2004) Reduced expression of liver-intestine cadherin is associated with progression and lymph node metastasis of human colorectal carcinoma. Cancer Lett 212:253–259

    Article  CAS  Google Scholar 

  18. Wang XQ, Luk JM, Leung PP, Wong BW, Stanbridge EJ, Fan ST (2005) Alternative mRNA splicing of liver intestine-cadherin in hepatocellular carcinoma. Clin Cancer Res 11:483–489

    CAS  PubMed  Google Scholar 

  19. Tian MM, Zhao AL, Li ZW, Li JY (2007) Phenotypic classification of gastric signet ring cell carcinoma and its relationship with clinicopathologic parameters and prognosis. World J Gastroenterol 13:3189–3198

    Article  Google Scholar 

  20. Ge J, Chen Z, Wu S, Yuan W, Hu B (2008) A clinicopathological study on the expression of cadherin-17 and caudal-related homeobox transcription factor (CDX2) in human gastric carcinoma. Clin Oncol 20:275–283

    Article  Google Scholar 

  21. Takamura M, Sakamoto M, Ino Y, Shimamura T, Ichida T, Asakura H, Hirohashi S (2003) Expression of liver-intestine cadherin and its possible interaction with galectin-3 in ductal adenocarcinoma of the pancreas. Cancer Sci 94:425–430

    Article  CAS  Google Scholar 

  22. Valverde A, Povedano E, Ruiz-Valdepeñas Montiel V, Yáñez-Sedeño P, Garranzo-Asensio M, Rodríguez N, Domínguez G, Barderas R, Campuzano S, Pingarrón JM (2018) Determination of cadherin-17 in tumor tissues of different metastatic grade using a single incubation-step amperometric immunosensor. Anal Chem 90:11161–11167

    Article  CAS  Google Scholar 

  23. Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2017) Carbon nanostructures for tagging in electrochemical biosensing: a review. C 3:3. https://doi.org/10.3390/c3010003

    Article  CAS  Google Scholar 

  24. Sánchez-Tirado E, Arellano LM, González-Cortés A, Yáñez-Sedeño P, Langa F, Pingarrón JM (2017) Viologen-functionalized single-walled carbon nanotubes as carrier nanotags for electrochemical immunosensing. Application to TGF-β1 cytokine. Biosens Bioelectron 98:240–247

    Article  Google Scholar 

  25. Sánchez-Tirado E, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2018) Magnetic multiwalled carbon nanotubes as nanocarrier tags for sensitive determination of fetuin in saliva. Biosens Bioelectron 113:88–94

    Article  Google Scholar 

  26. Mollarasouli F, Serafín V, Campuzano S, Yáñez-Sedeño P, Pingarrón JM, Asadpour-Zeynali K (2018) Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes. Anal Chim Acta 1011:28–34

    Article  CAS  Google Scholar 

  27. Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H (2014) DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron 60:64–70

    Article  CAS  Google Scholar 

  28. Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C (2016) Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat Protocols 11:1244–1263

    Article  CAS  Google Scholar 

  29. Serafín V, Valverde A, Martínez-García G, Martínez-Periñán E, Comba F, Garranzo-Asensio M, Barderas R, Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2019) Graphene quantum dots-functionalized multi-walled carbon nanotubes as nanocarriers in electrochemical immunosensing. Determination of IL-13 receptor α2 in colorectal cells and tumor tissues with different metastatic potential. Sensors Actuators B Chem 284:711–722

    Article  Google Scholar 

  30. Serafín V, Torrente-Rodríguez RM, González-Cortés A, García de Frutos P, Sabaté M, Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2018) An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry. Talanta 179:131–138

    Article  Google Scholar 

  31. Uygun ZO, Uygun HDE (2014) A short footnote: circuit design for faradaic impedimetric sensors and biosensors. Sensors Actuator B Chem 202:448–453

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Spanish Ministerio de Economía y Competitividad, Grants RTI2018-096135-B-I00 and CTQ2015-64402-C2-1-R, and the TRANSNANOAVANSENS-CM Program from the Comunidad de Madrid (Grant P2018/NMT-4349), are gratefully acknowledged. R.B. acknowledges the financial support of the PI17CIII/00045 Grant from the AES-ISCIII program. M.G.-A. was supported by a contract of the Programa Operativo de Empleo Juvenil y la Iniciativa de Empleo Juvenil (YEI) with the participation of the Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid y del Fondo Social Europeo.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susana Campuzano or Paloma Yáñez-Sedeño.

Ethics declarations

The author(s) declare that they have no competing interests. This study and all the experimental protocols used were performed according to the guidelines and regulations and approved by the University Complutense of Madrid. The Institutional Ethical Review Board of the Hospital La Paz (Madrid, Spain), that supplied us with the clinical samples, approved this study and all patients given their written informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serafín, V., Valverde, A., Garranzo-Asensio, M. et al. Simultaneous amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 by using grafted screen-printed electrodes and a composite prepared from quantum dots and carbon nanotubes for signal amplification. Microchim Acta 186, 411 (2019). https://doi.org/10.1007/s00604-019-3531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3531-5

Keywords

Navigation